

Commonwealth of Virginia

Enterprise Technical Architecture (ETA)

Application Domain Report

Version 1.1 July 01, 2016

Prepared by:

Virginia Information Technologies Agency
ETA Application Domain Team

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

(This Page Intentionally Left Blank)

ii

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Application Domain Team Members
Pamela Tauer .. Virginia Department of Transportation
Peter Rotscheid .. Virginia Department of Health
Ted Maxwell ... VITA, Business Services
Tim Mauney.. VITA, Business Services
Rusty Waterfield (Higher Education Representative) Old Dominion University
Scott Somerhalder... Virginia.gov
Tony Shoot/Jim Dart..Northrop Grumman
Todd Kissam (Team Facilitator)........VITA, Policy, Practices, and Enterprise Architecture

The Application Domain team began its work by delineating the team’s goals, objectives,
and scope of work. Discussions included how the domain interfaces with other
architecture domains, present and future directions, and how often the information
provided in this document is to be updated. The team also reviewed input from
publications and individuals with specialized knowledge. The results of the team’s
efforts, research and deliberations are provided throughout this document.

Application Domain Report: Version History
Revision Date Description
1.0 07-10-2006 Initial

 2.0 07-01-2006 Update necessitated by changes in the Code of
Virginia and organizational changes in VITA. The
changes are administrative. There are no substantive
changes to the principles, recommended practices or
requirements.

Review Process
Technology Strategy and Solutions Directorate Review
The domain report was reviewed and approved by Jerry Simonoff, Director and Paul
Lubic, the Associate Director of Policy, Practices, and the Manager of the Enterprise
Architecture Division.

Online Review
Participation of all Executive Branch agencies was encouraged through a review and
comment period via VITA’s Online Review and Comment Application (ORCA).
Technology businesses and the general public were also actively encouraged to use
ORCA to provide comments. All comments were considered and many resulted in
modifications to the final document. Additionally, the Domain team provided the
reviewers with responses to their comments.

iii

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Identifying Changes in This Document

• See the latest entry in the revision table above
• Vertical lines in the left margin indicate the paragraph has changes or additions.

 Specific changes in wording are noted using italics and underlines;
with italics only indicating new/added language and italics that is
underlines indicating language that has changed.

• Note that page header dates vary throughout the document depending on when or if
some portion of a particular chapter/section has been updated.

The following examples demonstrate how the reader may identify requirement
updates and changes:

EXA-R-01 Technology Standard Example with No Change – The text is

the same. The text is the same. The text is the same.

EXA-R-02 Technology Standard Example with Revision – The text is the
same. A wording change, update or clarification is made in this
text.

EXA-R-03 Technology Standard Example of New Standard – This standard

is new.

iii

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

(This Page Intentionally Left Blank)

4

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Table of Contents

Executive Summary of Application Domain ... 1
Overview ... 3

Commonwealth of Virginia: To-Be ETA .. 6

Definition of Key Terms ... 7

Agency Exception Requests .. 9

Application Scope .. 11
Overall Application Domain Scope ... 12

Scope of this Report ... 14

As-Is Application Architecture .. 14

To-Be Application Architecture .. 15

Future Application Domain Initiatives ... 15

Domain-wide Principles, Recommended Practices and Requirements 17
Domain-wide Principles ... 17

Domain-wide Recommended Practices ... 17

Domain-wide Requirements .. 19

Application Domain Technical Topics ... 21
Enterprise System Design .. 21

Service-Oriented Architecture (SOA): Implementation and Governance ...21
Enterprise Artifact Repository ...27
Application Interfaces ...28

Application Acquisition .. 30

Development and Support Platforms .. 33
Enterprise Framework Platform ..35
Collaborative Platform ..37
Development Languages ...39
Coding Guidelines and Standards ...40

Software Engineering ... 41
Software Development Methodologies ...43
Application Architecture and Design ..46
Modeling ...54
Business Rules ..54
Reusable Components ...56
Configuration Management ...58
Test Management ..58
Schedule and Task Management ...60

Geospatial Technologies ... 62

Enterprise Applications ... 63
eCommerce .. 63

5

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Glossary ... 69

Appendix A: Example SOA Centralized Implementation and Governance Model. 73

Appendix B: Software Testing Types and Techniques .. 77
Dynamic Software Testing Types .. 78

Dynamic Testing Techniques ... 85

Static Testing Techniques .. 86

Appendix C: Features and Benefits of the Virginia.gov Payment Portal 89

Appendix D: References and Links .. 91

6

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Executive Summary of Application Domain
The Application Domain Report is written to assist business and technical leaders in state
agencies and central services in making sound decisions related to agency application
development and support. A well-defined ETA Application Domain will enable the
Commonwealth of Virginia to leverage the most value from its agency software solution
assets. This application domain report includes the technology topics and the
components needed to provide agencies with a foundation of development and support
platforms, tools, processes, practices and requirements that can implement business
processes and meet the Commonwealth’s ever changing business needs. The topics
include Enterprise System Design, Application Acquisition, Development and Support
Platforms, Software Engineering, Geospatial Technologies, and Enterprise Applications

The Commonwealth relies heavily on computer applications to support agency business
operations. The agencies’ business processes often must change in response to both
legislation and new demands from citizens. Unfortunately, the Commonwealth’s
computer applications can not always respond to these changes in an effective and
efficient manner because many current applications are either monolithic or two-tier
client/server applications.

Many of the Commonwealth’s current applications/solutions were developed
independently using different languages and tools. The ability to communicate with
other applications or systems or to adapt to changes in the business processes generally
was not a design requirement. This architectural approach has adversely impacted the
Commonwealth’s business in three ways:

• Additional cost and time needed to modify existing applications to support
changing business requirements

• Difficulty in integrating applications to share common services and data
• Extra expense to develop, use, and maintain new applications because there is

little reuse of code between applications

Application development tools, methodologies and technology are now available that can
help address these problems. Examples include:

• Reuse of Code
• Integration tools/Middleware
• New User Interface Options:
• N-tier Service-Oriented Architecture (SOA).

Although having a single software development/support product of each type might be
the ideal, the reality is that agencies have unique application needs. The application
requirements, technical and economic environments of each business unit will have a
strong influence upon tool/product choices. Over time, agencies will group related tools
into a limited number of standardized technology stacks. These “stacks” will provide
agencies with cost-effective development solutions for N-tier, Collaborative, Business
Intelligence (BI) or Analytical Technology and other solutions.

Page 1 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Page 2 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Overview
The Commonwealth’s Enterprise Architecture is a strategic asset used to manage and
align the Commonwealth’s business processes and Information Technology (IT)
infrastructure/solutions with the State’s overall strategy.

The Enterprise Architecture is also a comprehensive framework and repository which
defines:

• the models that specify the current (“as-is”) and target (“to-be”) architecture
environments,

• the information necessary to perform the Commonwealth’s mission,
• the technologies necessary to perform that mission, and
• the processes necessary for implementing new technologies in response to the

Commonwealth’s changing business needs.

The Enterprise Architecture contains four components as shown in the model in Figure 1.

Figure 1
Commonwealth of Virginia Enterprise Architecture Model

The Business Architecture drives the Information Architecture which prescribes the
Solutions Architecture that is supported by the Technical (technology) Architecture.

Page 3 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

S
U
P
P
O
R
T

MENT P

V
E

Prescribes

Supported by

Drives

(ETA)
rovide

ments for
hitecture

SU
PPO

R
T

D
EV

EL
O

PM
E

N
T

The Enterprise Technical Architecture (ETA) shown in Figure 2 consists of eight
technical domains that provide direction, recommendations and requirements for
supporting the Solutions Architecture and for implementing the ETA. The ETA guides
the development and support of an organization’s information systems and technology
infrastructure.

Figure 2
ETA Relationship to the Enterprise Architecture

Business

Architecture

Enterprise Technical Architecture

Drives

Information
Architecture

Prescribes

Technical Domains

Solutions Architecture

INFORMATION

Supported by

Technical Architecture

DATABASE

Enterprise Architecture Model

The Enterprise Technical Architecture

consists of eight technical domains that p
direction, recommendations, and require
supporting the Enterprise Solutions Arc

and for implementing the ETA.

SECURITY

ENTERPRISE

SYSTEMS
MANAGEMENT

APPLICATION

INTEGRATION

PLATFORM

NETWORKING AND

TELECOMMUNICATIONS

Each of the domains is a critical piece of the overall ETA. The Networking and
Telecommunications and Platform Domains address the infrastructure base and provide
the foundation for the distributed computing. The Enterprise Systems Management,
Database, Applications, and Information Domains address the business functionality and
management of the technical architecture. The Integration Domain addresses the
interfacing of disparate platforms, systems, databases and applications in a distributed
environment. The Security Domain addresses approaches for establishing, maintaining,
and enhancing information security across the ETA.

This report addresses the Enterprise Technical Architecture Application Domain and
includes requirements and recommended practices for Virginia’s agencies1, 2.

1 This report provides hyperlinks to the domain report Glossary in the electronic version. In the electronic
and printed versions, the hyperlinks will have the appearance established by the preferences set in the
viewing/printing software (e.g., Word) and permitted by the printer. For example, the hyperlinks may be
blue and underlined in the screen version and gray and underlined in the printed version.
2The Glossary entry for agency is critical to understanding ETA requirements and standards identified in
this report and are is repeated here. State agency or agency - Any agency, institution, board, bureau,
commission, council, or instrumentality of state government in the executive branch listed in the
appropriation act. ETA requirements/standards identified in this report are applicable to all agencies

Page 4 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

This report was developed by the Application Domain team, which was commissioned to
identify domain related requirements and recommendations. Identified requirements and
technology product standards from this domain report will were be combined with
requirements and technology product standards from other technical domain reports into
a single ETA Standard in 2006 for review and acceptance by the Information
Technology Investment Board (ITIB). In 2010 the ITIB was replaced by the Information
Technology Advisory Council (ITAC).

Concerning local governments, courts, legislative agencies, and other public bodies,
while they are not required to comply with a requirement unless the requirement is a
prerequisite for using a VITA service or for participating in other state-provided
connectivity and service programs, their consideration of relevant requirements is highly
recommended. This architecture was designed with participation of local government and
other public body representatives with the intent of encouraging its use in state and local
interconnectivity efforts.

including the administrative functions (does not include instructional or research functions) of institutions
of higher education, unless exempted by language contained in a specific requirement/standard.

Page 5 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Commonwealth of Virginia: To-Be ETA

The to-be Enterprise Technical Architecture envisioned for the Commonwealth will be
one where the Commonwealth’s citizens and other customers who wish to access
Virginia services will do so by utilizing an Enterprise Portal via standard web browsers.

Where appropriate, these online government services will be developed, delivered and
supported using a Service-Oriented Architecture (SOA) based on open and industry
standard solutions. Selected legacy applications will be exposed to the SOA using web
services.

The SOA will be supported by an Enterprise Service Bus that provides Orchestration and
Choreography Services to the agencies.

Central integration and coordination will be managed by an Integration Competency
Center (ICC) that supports agency needs such as: asynchronous message queuing and
persistence.

Large complex mission critical applications that need to be reliable, scalable, secure and
highly available will be n-tiered and will utilize business rule and workflow engines.

Enterprise application software for the core government administrative business functions
will be consolidated and the underlying business processes modernized. An Application
Management Center of Excellence will service and manage the new enterprise
applications that replace existing legacy and silo-based applications.

Data will be exchanged among systems, agencies, institutions of higher learning,
localities, the federal government, and partners using XML based standards such as the
Global Justice XML Data Model and the National Information Exchange Model.

The number and types of software tools and products used by the Commonwealth will be
decreased to reduce complexity. This will create the opportunity for agencies to refocus
their current in-house IT resources to achieve higher levels of expertise on the fewer
required products resulting in, among other benefits, a lower dependence on outside
contractors.

Agency software applications and customer services will be delivered and supported by
an IT infrastructure that will:

• Be responsive, agile, modular, scalable, reliable, secure, and highly available
(24x7)

• Utilize ITIL (IT Infrastructure Library) best practices
• Have extensive and proactive technology refreshment
• Utilize a shared services model for technology delivery
• Have a single secure state-wide network and Intranet
• Have a state-of-the-art data center and back-up facility
• Consolidate agency servers in their most cost-effective locations

Page 6 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Unify statewide electronic mail services
• Employ innovative procurements, supplier partnerships, and financing

arrangements to fund, expedite, and ensure the performance of future initiatives
• Provide a statewide customer care center
• Improve the cost performance of IT utilized by the Commonwealth

Transition:
The Commonwealth will transition from silo-based, application centric and agency
centric information technology investments to an enterprise approach where applications
are designed to be flexible. This allows agencies to take advantage of shared and
reusable components, facilitates the sharing and reuse of data where appropriate, and
makes the best use of the technology infrastructure that is available.

The implementation of the to-be architecture will take some time. It is not the intent of
the Commonwealth to force agencies to replace their existing systems. The migration to
the to-be architecture will occur as Agencies consider new information technology
investments or make major enhancements/replacements to their existing systems. It is
important to note that the Commonwealth ETA is not static; it needs to continue to
evolve to support changing business strategies and technology trends.

Rationale:
Agencies can achieve the following benefits resulting from the Commonwealth’s
implementation of the ETA:

• Better responsiveness to changing business needs and rapidly evolving
information technologies.

• Greater ease of software application integration and application interfacing.
• Easier secure access to data and information to enable interagency collaboration

and sharing.
• Increased levels of application interoperability within the Commonwealth, with

other states and municipalities, and with the Federal government.
• Increased sharing and re-use of current information technology assets.
• Faster deployment of new applications.
• Reduction in costs required to develop, support and maintain agency applications.

Definition of Key Terms

All of the Application Domain ETA standards and requirements considered to be critical
components for implementing the Commonwealth’s ETA are included in this report.

Page 7 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

The report presents three forms of technical architecture guidance for agencies to
consider when planning or when making changes or additions to their information
technology:

• Requirements – mandatory enterprise technical architecture directions. All
requirements are included within the ETA Standard.

• Technology Component Standard Tables - indicate what technologies or products
that agencies may acquire at a particular point in time. These are mandatory when
acquiring new or replacing existing technology or products. All technology
component standard tables are included within the ETA Standard.

• Recommended Practices - provided as guidance to agencies in improving cost
efficiencies, business value, operations quality, reliability, availability, decision
inputs, risk avoidance or other similar value factors. Recommended Practices are
optional.

The following terminology and definitions are applicable to the technology component
standard tables presented in this report:

Strategic:

This technology is considered a strategic component of the Commonwealth’s Enterprise Technical
Architecture. It is acceptable for current deployments and shall be used for all future deployments.

Emerging:

This technology requires additional evaluation in government and university settings. This
technology may be used for evaluative or pilot testing deployments or in a higher education
research environment. Any use, deployment or procurement of this technology beyond higher
education research environments requires an approved Commonwealth Enterprise Technical
Architecture Exception. The results of an evaluation or pilot test deployment should be submitted
to the VITA Technology Strategy and Solutions: Policy, Practice and Architecture Division
for consideration in the next review of the Enterprise Technical Architecture for that technology.

Transitional/Contained:

This technology is not consistent with the Commonwealth’s Enterprise Technical Architecture
strategic direction. Agencies may use this technology only as a transitional strategy for moving to
a strategic technology. Agencies currently using this technology should migrate to a strategic
technology as soon as practical. A migration or replacement plan should be included as part of the
Agency’s IT Strategic Plan. New deployments or procurements of this technology require an
approved Commonwealth Enterprise Technical Architecture Exception.

Obsolescent/Rejected:

This technology may be waning in use and support, and/or has been evaluated and found not to
meet current Commonwealth Technical Architecture needs. Agencies shall not make any
procurements or additional deployments of this technology. Agencies currently using this
technology should plan for its replacement with strategic technology to avoid substantial risk. The
migration or replacement plan should be included as part of the Agency’s IT Strategic Plan.

Page 8 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Agency Exception Requests

Agencies that desire to deviate from the requirements or the technology component
standards specified in this report shall request an exception for each desired deviation and
receive an approved Enterprise Technical Architecture Change/Exception Request Form
prior to developing, procuring, or deploying such technology or not complying with a
requirement specified in this report. The instructions for completing and submitting an
exception request are contained within the Commonwealth Enterprise Architecture
Policy.

Page 9 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

(This Page Intentionally Left Blank)

Page 10 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Application Scope

The Commonwealth relies heavily on computer applications to support agency business
operations. The agencies’ business processes often must change in response to both
legislation and new demands from citizens. Unfortunately, the Commonwealth’s
computer applications can not always respond to these changes in an effective and
efficient manner because many current applications are either monolithic or two-tier
client/server applications.

Many of the Commonwealth’s current applications/solutions were developed
independently using different languages and tools. The ability to communicate with
other applications or systems or to adapt to changes in the business processes generally
was not a design requirement. This architectural approach has adversely impacted the
Commonwealth’s business in three ways:

1. Additional cost and time needed to modify existing applications to support
changing business requirements

2. Difficulty in integrating applications to share common services and data

3. Extra expense to develop, use, and maintain new applications because there is
little reuse of code between applications

Application development tools, methodologies and technology are now available that can
help address these problems. Examples include:

• Reuse of Code: Units of code previously duplicated in many applications can be
packaged into components or services for reuse in different applications.

• Integration tools/Middleware: Shared software allows applications to
communicate with each other, access data residing on different platforms, and
access shared services.

• New User Interface Options: There is an expanding array of user interface options
- including Web browsers, personal digital assistants (PDAs), and interactive
voice response units (IVRs).

• N-tier Service-Oriented Architecture (SOA): In the n-tier SOA, applications are
partitioned into discrete functional units called “services.” Each service
implements a small set of related business rules or function points. If a business
rule must be modified to support changing business requirements, only the service
that implements that business rule is impacted. The remainder of the application
remains intact. The SOA comprises loosely coupled (joined), highly
interoperable application services that interoperate over different development
technologies. The services are very reusable because the interface definition is
defined in a standards compliant manner.

Page 11 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

The ETA Application Domain provides agencies with a foundation of development and
support platforms, tools, processes, practices and requirements that can implement
business processes and meet the Commonwealth’s ever changing business needs.

Overall Application Domain Scope

The domain report represents the work and decisions of the 2005-2006 Application
Domain Team. The domain team identified six technology topics:

1. Enterprise System Design
2. Application Acquisition
3. Development and Support Platforms
4. Software Engineering
5. Geospatial Technologies
6. Enterprise Applications

The following hierarchy shows how each of these topics was sub-divided into technology
areas (components) and the priorities [] for development:

[1]: Team selected components to be addressed first
[2]: Components that are expected to be addressed within 2 years
[EA]: Components that are expected to be addressed as part of the CGI-AMS

(PPEA) Enterprise Application initiative

Enterprise System Design Topic Components:

• Service-Oriented Architecture (SOA): Implementation and Governance [1]
• Standards-based service-oriented development model (SODA) [2]
• Enterprise Artifact Repository [1]
• Application Interfaces [1]

Application Acquisition Topic Components: [1]

Development and Support Platforms Topic Components:
• Enterprise Framework Platform [1]
• Wireless/Mobile Platform - Java 2 Platform, Micro Edition (J2ME) [2]
• Collaborative Platform [1]
• Development Languages [1]
• Coding Guidelines and Standards [1]

o J2EE Guidelines [2]
o .NET Guidelines [2]

• Integrated Development Environment (IDE) [2]
• Plug-ins: Application Program Interface (API)/Protocol [2]
• Object Relational (OR) Mapping [2]
• Application Platform Servers/Enterprise-Scope Application Platform Suites [2]
• Web Portal (includes Enterprise) [2]

Software Engineering Topic Components:

Page 12 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Software Development Methodologies [1]
• Application Architecture and Design [1]
• Modeling [1]

o Business Process Execution Language (BPEL) and other business modeling
tools [2]

• Business Rules [1]
• Reusable Components [1]
• Presentation/Interface: [2]

o Hyper Text Markup Language (HTML)
o Dynamic/Server-Side Display
o Content Rendering:

• Dynamic HTML (DHTML)
• eXtensible HTML (XHTML)
• Cascading Style Sheets (CSS)

o Wireless/Mobile/Voice:
• Wireless Markup Language (WML)
• XHTML Mobile Profile (XHTMLMP)

• Voice XML (VXML)
• Configuration Management [1]
• Test Management [1]
• Defect Tracking [2]
• Change Management [2]
• Deployment Management [2]
• Requirements Gathering: Functional and Non-functional [2]
• Requirements Management and Traceability [2]
• Schedule and Task Management [1]

Geospatial Technologies Topic Components:

Mapping/Geospatial/Elevation/GPS (GIS):
• Integrated Development Environment (IDE)
• Geospatial Data Development Standards
• Database/Geospatial Metadata
• Utilities
• Reporting and Analysis
• Global Positioning Systems (GPS)

Visualization: [2]
• Graphing/Charting

Enterprise Applications Topic Components:

• eCommerce [1]
• Human Resources [EA]
• Financial Management [EA]
• Assets/Materials Management [EA]
• Human Capital/Workforce Management [EA]
• Customer Relationship Management [EA]

Page 13 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Customer Initiated Assistance [EA]
• Supply Chain Management [EA]
• Document Management [2]
• Authentication/Single Sign-on (SSO) [EA]
• Search Engines [2]
• Audio and Video Conferencing [EA]

Scope of this Report

This report will address all of the components identified above having a priority of one
[1].

As-Is Application Architecture

Data on over 1,600 agency applications was compiled as part of the 2003 and 2004 due
diligence effort in preparation for negotiating partnerships with several companies
interested in helping the Commonwealth modernize its infrastructure. Unfortunately, this
data did not include specific enough information on all of the tools used to support
agency software development. There was some data collected on agency use of
application development languages:

Application Development
Language

Reported 2003
Agency Usage in Applications

ASP 145
Assembler 5
C/C++ 28
Clipper 7
COBOL 53
Cold Fusion 33
Infobasic 9
JAVA/JAVA Script 86
MAPPER 28
MS Access 36
MS Visual Basic/VB Script 286
Natural 46
Perl 8
PL/SQL 79
Powerbuilder 25

Over the next year, the Commonwealth will collect data on agency (excluding higher
education) use of software tools to create, maintain and publish a complete as-is
inventory.

Page 14 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

To-Be Application Architecture

Although having a single software development/support product of each type might be
the ideal, the reality is that agencies have unique application needs. The application
requirements, technical and economic environments of each business unit will have a
strong influence upon tool/product choices. Over time, agencies will group related tools
into a limited number of standardized technology stacks. These “stacks” will provide
agencies with cost-effective development solutions for N-tier, Collaborative, Business
Intelligence (BI) or Analytical Technology and other solutions.

Future Application Domain Initiatives

The next version of this report and associated documents is expected to address:

• J2EE and .NET Guidelines
• Geospatial Technologies

The completed Software Tool Inventory will be analyzed by the domain team in setting
the priorities of which of the above priority 2 components will be addressed in the future
versions of this report. The Enterprise Applications Initiative progress will also drive
when those technology components are addressed.

Page 15 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

(This Page Intentionally Left Blank)

Page 16 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Domain-wide Principles, Recommended Practices and
Requirements

The following principles, recommended practices and requirements pertain to all
components, in all situations and activities related to the ETA Application Domain.
Component specific principles, recommended practices and requirements are discussed in
the next section of the report.

Domain-wide Principles

There were no domain-specific principles identified by the Application Database Domain
team in addition to the principles identified in the “Commonwealth of Virginia Enterprise
Architecture – Conceptual Architecture”.

Domain-wide Recommended Practices

The following nine domain-wide recommended practices were identified:

APP-RP-01: Adopt TCO Model for Applications and Technologies –

The Commonwealth and agencies should adopt a total cost of
ownership model for applications and technologies which
balance the costs of development, support, training, disaster
recovery and retirement against the costs of flexibility,
scalability, ease of use, and reduction of integration
complexity.

Rationale:
• Leads to higher quality solutions.
• Enables improved planning and budget decision-making.
• Reduces the IT skills required for support of obsolete systems or old standards.
• Simplifies the IT environment.

APP-RP-02: Software Acquisition Policy – Any agency that purchases

software should develop and implement a Software
Acquisition Policy that covers the following:
• Determination of what documentation is necessary as

evidence of licensing for each type of software the
organization owns.

• Designation of centralized, safe location(s) for license
documentation.

• Delegation of the responsibility and accountability for
purchasing new software, maintaining records and
updating the agency software inventory.

• Storage of the original documentation.

Page 17 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Storage of the original media.

APP-RP-03: Software Use Policy – Agencies should develop and
implement a Software Use Policy that covers the following:
• The agency’s rules for downloading, installing, and using

software titles.
• The review of the terms and conditions for each license to

ensure proper usage.
• A software installation authorization process.

APP-RP-04: Enterprise Shared Services – The Commonwealth

(excluding higher education) should create, deploy and
support Enterprise Shared Services such as:
• Messaging: Enterprise Service Bus - Use of ESB provides

an assured delivery mechanism that eliminates the need
for developers to code for potential network failures

• Portal: Content publishing and management - provides
users with a single point of access for all Commonwealth
services. In addition, a consistent presentation layer greatly
enhances the government application user experience.

• Security: Identity Management - eliminates the need for
each application to perform authentications and maintain
identity repositories

• Publish/Discover: Web Services Registry - run time service
reuse only requires finding a service in the Registry and
binding to it. This eliminates interoperability problems that
typically impede code reuse, such as compiler versions,
platforms and programming languages.

APP-RP-05: Support Risk-Mitigation – Agencies should maintain vendor

or equivalent quality level support or have a risk-mitigation
strategy for all software tools and hardware used to develop or
support Commonwealth and/or agency “mission critical
applications”.

APP-RP-06: Vendor Dependency Risk Mitigation – The agencies should

create and maintain a vendor dependency risk-mitigation
strategy for all vendor dependent “mission critical
applications”.

Rationale:
• Applications that incorporate vendor specific product technologies risk

becoming dependent on the vendor.
• Vendor dependent applications require that developers must maintain an in-

depth knowledge of the vendor’s products and planned future product
changes.

Page 18 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

APP-RP-07: Service Level Agreement – Agencies should implement a
Service Level Agreement (SLA) and track/report SLA
performance measurements for each deployed “mission
critical application”.

APP-RP-08: Open Standards – Agencies should select open-standards

based products, tools, designs, applications, and methods
where appropriate to reduce integration and infrastructure
complexity.

Rationale:
• The use of standard interfaces and products that adhere to open standards will

help reduce the complexity associated with the IT environment.
• Use of open standards-based products reduces the need to develop custom

solutions to make components interoperable, thus reducing time and cost of
developing and supporting new systems and upgrades.

• Costs associated with help desk support, training and total cost of ownership
can also be reduced through the reduction in the complexity of the information
infrastructure.

• Less complex structures and better integration means easier information
access and sharing, encouraging use of the resources.

• Risks associated with system implementation and upgrades will be reduced.
Applications will behave in a logically consistent manner across user
environments.

APP-RP-09: Industry Standards and Mainstream Technologies –

Agencies’ applications/solutions should use, industry
standards and industry-proven “state-of-the-art” mainstream
technologies.

Rationale:
• Avoids dependence on weak vendors.
• Reduces risks.
• Ensures robust product support.
• Enables greater use of commercial-off-the-shelf solutions.
• Allows flexibility and adaptability in product replacement.

Domain-wide Requirements

The following four domain-wide requirements were identified:

APP-R-01: Security, Confidentiality, Privacy and Statutes –

Agencies shall implement applications/solutions in
adherence with all security, confidentiality and privacy
policies and applicable statutes.

Rationale:
• Safeguards sensitive and proprietary information.

Page 19 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Enhances public trust.
• Enhances the proper stewardship over public information.
• Ensures the integrity of the information.

APP-R-02: Software Tools Version/Release Support – The

version/release levels of all software tools used for
development and support of Commonwealth and/or
agency “mission critical applications” shall have vendor
or equivalent quality level support available.

Rationale:
• Unsupported software is no longer being updated to fix newly discovered

security vulnerabilities or other problems that occur due to environmental
changes.

APP-R-03: Disaster Recovery and Business Continuity

Planning – An assessment of business recovery
requirements is mandatory when acquiring, developing,
outsourcing, or making major enhancements to
“mission critical applications”. Based on that
assessment, appropriate disaster recovery and
business continuity planning, design and testing shall
take place.

Rationale:
• The pressure to maintain availability will increase in importance. Any

significant visible loss of system stability could negatively impact our image.
• Continuation of business activities without IT is becoming harder.
• Application systems and data are valuable State assets that must be protected.

APP-R-04: Maintain Software Tools Inventory – VITA shall

collect data on agency (excluding higher education) use
of software tools, maintain an up-to-date inventory, and
perform research in order to create a more effective
and efficient environment in support of the Application
Domain.

Rationale:
• No current agency software tool use data exists for most tool categories.
• The Commonwealth can negotiate lower prices based on larger quantities of

products purchased from fewer vendors.
• Reducing the number of products can result in the availability to the agencies

of higher levels of support that can be provided with the same or less
resources.

Page 20 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Application Domain Technical Topics
The Application Domain defines all the technology components for Agency development
and support of applications/solutions. The following discussion of each component
identifies various Principles, Recommended Practices, Requirements and/or Product
Standards. Requirements are conditions which must be met, i.e. are required and Product
Standards are specifications for the use of specific hardware and software relative to the
particular component:

The Application domain includes the following six technology topics:

1. Enterprise System Design
2. Application Acquisition
3. Development and Support Platforms
4. Software Engineering
5. Geospatial Technologies
6. Enterprise Applications

Enterprise System Design

Enterprise System Design refers to a collection of technologies, practices, requirements
and standards that can assist the agencies in the design of solutions that can meet the
Commonwealth’s ever changing business needs.

The Enterprise System Design topic includes the following components:

• Service-Oriented Architecture (SOA): Implementation and Governance
• Standards-based Service-Oriented Development Model (SODA): To be addressed

in future versions of this report
• Enterprise Artifact Repository
• Application Interfaces.

Service-Oriented Architecture (SOA): Implementation and Governance

In a Service-Oriented Architecture (SOA) environment, nodes on a network make
resources available to other participants in the network as independent services that the
participants access in a standardized way. Unlike traditional object-oriented
architectures, a SOA comprises loosely coupled (joined), highly interoperable application
services. Because these services interoperate over different development technologies
(such as Java and .NET), the software components become very reusable due to the virtue
of the interface definition being defined in a standards compliant manner (Web Service
Definition Language [WSDL]). This also encapsulates and hides the vendor/language
specific implementation from the calling client/service. SOA provides a methodology
and framework for documenting enterprise capabilities and supports both integration and
consolidation activities.

Page 21 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

SOA-based composite applications will enable the Commonwealth to integrate business-
critical processes with existing applications and systems. To gain the agility, flexibility
and efficiency that SOA enables, these services and composite applications must be
accessible and controlled across the enterprise.

The Commonwealth needs to implement a SOA as a foundation for Enterprise
Applications and agency developed solutions for in-scope agencies. A key to successful
implementation is SOA Governance.

SOA Governance is the ability to ensure that all of the independent efforts (whether in
the design, development, deployment, or operations of a Service) come together to meet
the enterprise SOA requirements.3

Rationale:
Well designed and consistently enforced policy and governance procedures are critical to
the success of SOA, along with effective communication and collaboration. Gartner
defines policy, in the context of SOA, as a set of guidelines, rules, regulations or
requirements to be enforced on services. Examples are security policies, such as access
and authentication; management policies, such as performance, monitoring and
availability; development policies, such as development-language requirements; routing
policies, such as content-based routing; transformation policies, based on document types
or partner profiles; and correct usage policies, such as sequencing resources. 4

An example of the importance of formalized policy, process, and governance procedures
is in the design of new “public” services, those services with a reasonable chance of
being shared or reused across multiple domains. Remaining services are sometimes
called "private" services. When SOAs grow to more than 50 services (for example, by
patching together two different SOA pilots on related sections of the IT infrastructure),
their growth cannot be managed informally anymore, and must be disciplined (typically
by an agreed governance mechanism, such as an Integration Competency Center [ICC])
to foster reuse and avoid duplication of services.5 An example of the detailed functions of
a centralized ICC are shown in the Appendix A – SOA Centralized Implementation
and Governance Model.

Implications:
The Enterprise Architecture group (which consists of members from across state agencies
and VITA’s ICC) will establish the enterprise SOA vision and the SOA reference
architecture. A central integration group such as an ICC is typically established and

3 SOA Governance (Source: SOA Governance, WebLayers, Inc. 238 Main Street, 4th Floor, Cambridge,
MA 02142)

4 SOA Governance: Frameworks, Registries and Policy Enforcement. Gartner. L. Frank Kenney and Daryl
Plummer. 5-7 December 2005 JW Marriott Grande Lakes Orlando, Florida

5 The ICC and SOA Governance: Managing a Successful Integration Project. Paolo Malinverno, Gartner
Research

Page 22 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

empowered within an organization as the approach to structured application integration
matures. For “public” or shared services, agencies, localities and business partners may
utilize VITA’s SOA backbone (see section on Enterprise Service Bus in Integration
Domain Report).

In initial SOA projects, collaboration and communication can be managed informally.
However, in order to obtain wide spread adoption and realize the full benefits, rigorous
processes and strong governance are essential. Development and governance are typically
coordinated through a central ICC.

Reuse is such a fundamental element of "value" around SOA that developer incentives
must evolve from a project-centric focus on quantity of code to a more strategic focus on
the number of services reused across projects and/or the number of reusable services
created. Adjustments in developers' compensation typically goes a long way, possibly
revamping HR policies to create more visibility, increase non-monetary compensation for
good collaborators, provide for revised orientation and training to change the (traditional
"I built it") culture in most developer communities, and so on. Focused coordinated
organizational efforts – involving HR, application development (AD) management and
key business stakeholders – to change the inherent behavior and culture of the developer
community are a key ingredient of success.

In addition to development, deployment and architecture issues, client organizations must
be prepared to address design, maintenance and management of an SOA, all of which are
critical to project success.

The ownership of services must be defined upfront, including identifying which groups,
individuals or roles develop and maintain specific service interfaces and/or service
implementations.6

Principle:
The following one principle was identified:

APP-P-01: Re-configure Existing Application Functionality as
Reusable Business Processes – Where cost-effective,
agencies should support the transition to a SOA by re-
configuring existing application functionality as reusable
business processes.

Rationale:
• Allows the acceleration integration.
• Permits business process innovation while leveraging legacy investments.

Recommended Practices:
The following seven recommended practices were identified:

6 SOA Governance: Frameworks, Registries and Policy Enforcement. L. Frank Kenney and Daryl
Plummer. Gartner Research

Page 23 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

APP-RP-10: SOA Center of Excellence – The Commonwealth should
explore creating a SOA Center of Excellence to establish
common standards, skills, and architecture migration
strategies for information integration and reuse in support of
an Enterprise-wide SOA implementation. The SOA Center of
Excellence should provide guidance on SOA issues such as:
• The use of central seed-funding mechanisms to subsidize

initial costs for reusable integration platforms in order to
gain long-term cost advantages to the Commonwealth.

• Building a centralized portfolio of reusable development
assets (services, components, objects, and adaptors) to
reduce agency development cycles and costs. How testing
services must be done.

• How teams cooperate to deploy SOA systems.
• What roles must exist and how to ensure that reuse

occurs.
• How to achieve effective service composition.
• How to govern orchestrated services.
• Design for extensibility and reuse.
• Deciding which new functionality should be exposed as a

service.
• Loosely coupling services to support broad interoperability

when requirements change.
• Designing appropriate modularity and granularity of

services.
• Encapsulating business processes into well-defined, self-

contained, course-grained services.
• Providing interoperable access to published services.
• Accessing services through standardized, platform-neutral,

self-describing, well-structured, and extensible messages.
• Separating the service interface from its implementation.
• Describing services using a standard format.
• Publicizing and discovering services using standard

service registries.
• Utilizing standard protocols for exchanging messages and

data between services.

APP-RP-11: Governance of New or Shared Services – To ensure
reduced integration costs and complexities, limit liabilities such
as security, and to effectively compete in the marketplace, the
Commonwealth should govern the design, development,
deployment, and operations of any new, and or shared,
services across the enterprise. The SOA Center of Excellence
should also perform Enterprise-wide architecture and design
review during the design phase of any application (excluding

Page 24 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Rationale:

higher education) that will either use or create web services.
The SOA Center of Excellence would be responsible for
establishing web service granularity, testing and deployment
requirements as well as the marketing of reusable services to
agencies and partners.

• After an agency has built a standard solution, the SOA Center of Excellence’s
final task is to internally merchandise these as preferred solutions, ensuring that
other agencies are aware of the favorable speed and cost economics of reusing the
existing solution.

• SOA Center of Excellence’s review can also evaluate large and complex
applications that that are under development to ensure that the solutions will be:

o Scalable: The application can handle potentially higher traffic loads in the
future.

o Extensible: The application can serve as the platform for the development
of future functionality.

o Secure: The application ensures user privacy.
o Available: The application is operational and accessible as required to

meet customer needs.

APP-RP-12: Centralized Governance Model – A centralized governance
model is recommended for entities planning to implement
“public” or shared services, likely to be reused across the
enterprise.

APP-RP-13: SOA Centralized Operations Model – A SOA Centralized

Operations model should be implemented.
Rationale:

• It will be less costly to invest in SOA operations staff and a SOA
infrastructure in a single data center.

• It will be far easier to manage shared web services that are all running in the
same environment, and then managing web services that are spread out across
multiple data centers. Centralized operations means configuring only one set
of network devices (firewalls, routers, etc.) and one set of application
platforms.

• It will be much easier to troubleshoot performance, availability, and
scalability problems if all shared services are running in a single environment.

• Security will be more manageable if “circles of trust” are established between
services in the same environment.

• Backup and disaster recovery will also be simplified.

APP-RP-14: Service Contract Policies – Service performance contracts
should be published by a producing department for a given
web service. Consuming organizations would build their
applications around these contracts. The contract process
itself would be established by the Governance portion of the

Page 25 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

SOA. Actual service performance would be monitored by the
individual data centers. For enterprise public service
applications, performance could be monitored by VITA’s ICC
infrastructure. In that scenario, VITA’s ICC and the publisher
would collaborate with the producing development
organization to fix any problems.

APP-RP-15: Centralized Integration Competency Center (ICC) – A

centralized Integration Competency Center (ICC) should be
built and empowered within an organization as the approach
to structured application integration matures. 7 The Integration
Competency Center (ICC) and the enterprise architecture
group typically establish the SOA vision and the SOA
reference architecture. An example of a centralized
implementation and governance model organization is shown
in Appendix A– SOA Centralized Implementation and
Governance Model.

APP-RP-16: Service Location Transparency. Service location should be

transparent to applications looking up services in a shared
Registry.

Rationale:
• Improves code mobility because services can be moved to different machines,

or to external providers.

Requirements:
The following four requirements were identified:

APP-R-05: Implement SOA – Agencies excluding higher
education shall create and implement the centralized
architectural review processes that are needed to
support and control SOA implementation ensuring that
all services built conform to standards, are
interoperable, non-duplicative, and reusable where
possible.

APP-R-06: SOA Support of .NET and J2EE (Java Platform

Enterprise Edition) – The Commonwealth’s SOA for
in-scope agencies shall support both .NET and J2EE
Enterprise Framework Platforms.

APP-R-07: SOA Center of Excellence Review of Developed

Applications – VITA, together with other executive
branch agencies, shall create recommended practices

7 The ICC and SOA Governance: Managing a Successful Integration Project. Gartner Research, Paolo
Malinverno

Page 26 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

and requirements to implement the SOA Center of
Excellence enterprise level (state-wide excluding higher
education) architectural design review and architectural
governance of agency developed new applications that
are large-scale, complex, use/create web services, or
can potentially share business processes with other
agencies.

APP-R-08: SOA Center of Excellence Review of COTS

(Commercial off-the-shelf) – VITA, together with other
executive branch agencies, shall create Enterprise
level (state-wide excluding higher education)
architectural review recommended practices and
requirements to support agency’s review/selection and
implementation of COTS based solutions that
implement Enterprise-wide Applications or cross-cutting
functions (such as accounting, facilities management or
procurement).

Enterprise Artifact Repository

As part of a systems acquire/develop decision, agencies should first consider the reuse of
existing applications and system components/artifacts. To be successful, a state-wide
library (repository) of reusable components and artifacts must be implemented and
maintained.

Designers can build flexible, scalable, and extensible applications by using components
as application building blocks, similar to building cars on an assembly line. Using
previously built and tested components in different ways or with new components can
accelerate the design, development, and delivery of new applications. Sharing of
components across applications can also eliminate significant duplicate design and test
efforts.

There are two strategies for reuse:

1. Opportunistic reuse: using assets that were not designed to be reused or are reused
in a manner for which they were not designed

2. Systematic reuse: using assets which were purposefully designed, built, and
managed to be reused

Systematic reuse has several advantages:

• Responsiveness: accelerates and streamlines project delivery
• Return on Investment (ROI): reduces solution delivery costs and provides

only those assets that produce the best business advantage
• Quality: ensures that only quality assets will be reused

Page 27 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Both reuse strategies require an implemented Enterprise Artifact Repository with
supporting practices and processes to be successful.

Requirement:

The following requirement was identified:
APP-R-09: Implement Enterprise-wide Artifact Repository –

The Commonwealth shall select, deploy and maintain
an Enterprise-wide Artifact Repository to support
implementation of a SOA and create recommended
practices and processes that support and encourage
agency use of the Repository.

Application Interfaces

Interfaces define the capabilities of communicating, transporting and exchanging
information through a common dialog or method. Delivery channels enable the
information to reach the intended destination, whereas Interfaces allow the interaction to
occur based on a predetermined framework. A Web-Services User Interface (WSUI) uses
a simple schema for describing a "component" that can be used in a portal to call backend
SOAP and XML services. WSUI uses XSLT style sheets to construct user-facing views
to enable users to interact with the services.

In n-tier applications, changes in business rules normally do not require changes in
interface code. Interfaces may need updating for other reasons. Examples include when
changes occur in another computer system that interfaces with that application or when
users need a graphical user interface instead of a character-based interface for that
application.

Recommended Practices:
The following two recommended practices were identified:

APP-RP-17: Interfaces Should Utilize Web-services – All interfaces for
newly developed or purchased (COTS) applications, reusable
components and services should utilize web-services
developed to industry/open standards.

Rationale:
• All interfaces should be based on an industry-defined set of open standards to

limit the potential for vendor dependency and to reduce development
complexity.

• Reuse is a key goal of service-oriented architectures (SOA)
• Ease of reuse can be maximized by developing and designing open interfaces

based on industry standards.

Page 28 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

APP-RP-18: Interfaces Should be Message-Based – The interfaces
between separate application systems should be
message-based; this applies to both internal and external
systems.

Rationale:
• The use of messaging is important for enforcing the architecture principle of

logical partitioning and boundaries.
• Enables rapid response in maintenance and enhancement activities as required

by changes in business processes.
• Messaging technology simplifies integration efforts.
• Messaging technology allows for transparency in locations, databases, and

data structures.

Page 29 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Application Acquisition

The choice of a systems acquisition method (buy/build decisions) should take into
account the functional characteristics of the proposed systems. The agencies should first
consider the reuse of existing applications and system components. If no components
exist, purchased solutions (COTS) should be explored. Applications or systems that can
provide automation of agency core business functions that have unique processes, yield
competitive advantages, or have demonstrable cost savings and/or enhanced value should
be the only candidates for in-house development by the Commonwealth. The Application
Acquisition topic is not broken down into components.

Principle:
The following one principle was identified:

APP-P-02: Acquisition Method Choice – The choice of a systems
acquisition method (buy/build decisions) should take into
account the functional characteristics of the proposed
systems. The agencies should first consider the reuse of
existing applications and system components. If no
components exist, purchased solutions (COTS) should be
explored. Applications or systems that can provide automation
of agency core business functions that have unique
processes, yield competitive advantages, or have
demonstrable cost savings and/or enhanced value should be
the only candidates for in-house development by the
Commonwealth.

Rationale:
• Use and availability of effective packaged solutions is increasing.
• Using tested solutions reduces risks.
• Reduces the total cost of ownership.
• The more you’re “like” everyone else (e.g., same standard, same systems), the

easier it is to share with others.

Commercial off-the-shelf (COTS) is a term for software or hardware products that are
ready-made and available for sale to the general public. They are often used as
alternatives to in-house developments or one-off government-funded developments
(government off-the-shelf [GOTS]). The use of COTS is being mandated across many
government and business programs because they may offer significant savings in
procurement and maintenance.

Recommended Practices:
The following six recommended practices were identified:

APP-RP-19: Use COTS when Cost-effective and Beneficial – Systems
and components of systems should be implemented using
commercial off-the-shelf (COTS) products when they

Page 30 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Rationale:

represent the most cost-effective (total cost of ownership) and
beneficial solution.

• The use of COTS products is potentially more cost-effective and efficient than
other approaches because of reduced development, implementation,
maintenance, and training costs.

• The use of COTS solutions offers the promise of reduced development time,
increased development productivity and improved system quality.

• Buying existing commercial services may provide the best value solution for
parts of work processes.

APP-RP-20: COTS Escrow – All agency contracts with COTS solution

vendors should require that the solution’s source code and
documentation be placed in escrow. It is recommended that
the contact also make provision for the agency inspection
(vendor supervised) of the source code and documentation
upon request.

APP-RP-21: Prefer COTS Web-services/SOA – Newly acquired COTS

solutions that utilize web services and support a Service-
Oriented Architecture (SOA) are preferred over those COTS
solutions that do not.

APP-RP-22: COTS Web-services Access to Data – Newly acquired

COTS solutions should include web services that provide
access to the applications data.

APP-RP-23: Customize COTS to Meet Business Needs – Commercial

off-the-shelf (COTS) should be customizable to meet business
needs either by the purchasing agency or by the vendor as a
paid-for-service.

APP-RP-24: Limit COTS Customizations – Agencies should limit and/or

isolate any customizations made to COTS solutions. All of the
customizations should be fully documented.

Rationale:
• Isolating COTS customizations improves the ability to upgrade and move to

new releases.
• Customization of COTS solutions can represent a significant burden in the

management, implementation and support of technical infrastructure.
• Customizing COTS solutions can add value/functionality to the business that

may outweigh the burden and proper documentation of the customization can
minimize the negative impact.

Page 31 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Requirements:
The following two requirements were identified:

APP-R-10: Evaluate COTS as Alternative – Commercial off-the-
shelf (COTS) solutions shall be evaluated and
documented as part of an Alternatives Analysis of
systems acquisition methods for all Enterprise-wide
Applications and cross-cutting functions (such as
accounting, facilities management or procurement).

APP-R-11: COTS Documentation – All “mission critical” COTS

solutions shall have their application components and
configurations fully documented.

Page 32 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Development and Support Platforms

The complexity, size, lifespan, and performance requirements of agency developed
applications/solutions vary greatly. Development and Support Platforms provide the
agencies with distinct approaches to address different application needs/ requirements.

These approaches can be implemented by the following development platforms:

• Enterprise Framework Platform – supports n-tier development of service-oriented
architecture for large-scale or complex applications that need to support high-
volume usage and/or long life spans.

• N-tier Visual-based Tool Development Platform – supports applications that are
not large-scale, complex and do not require high-volume usage and/or long life
spans. Generally developed by Business Analysts by using visual-based tools that
provide automated code generation.

• Collaborative Platform – many business’ needs do not require scalable or highly
available solutions. These needs often can be met by Workflow and Forms
Automation tools.

Please see “N-Tier Application Development with Microsoft.NET “by Karim Hyatt for an
excellent introduction to N-Tier Architecture.
http://www.microsoft.com/belux/msdn/nl/community/columns/hyatt/ntier1.mspx

Application development tools are critical to the development and support of
applications. Regardless of the tools used, it is important to design each tier to be portable
across platforms. Tool limitations can, however, impact tradeoffs in an application’s
design/architecture. The architecture should determine the tool selection, not the other
way around.

There are three approaches for selecting tools to develop n-tier applications:

Best of breed. Use separate, specialized tools for each application tier. Use middleware to
support communications between the different tiers.

Front end/back end. Two different tools are used: a specialized user interface
development tool and an integrated tool set that provides middleware for the business
rules and data access tiers. The middleware must support communications between the
user interface and other two tiers.

Integrated. Integrated tool sets are used that generate code for all tiers of the application.
These tools provide the middleware necessary to support communications between all
application tiers.

N-tier service-oriented application architectures require additional types of tools.

Page 33 of 94

http://www.microsoft.com/belux/msdn/nl/community/columns/hyatt/ntier1.mspx

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Repositories (libraries) to keep track of business rules that have been automated
by components.

• Software management tools to provide version control, configuration
management, and software distribution services.

Recommended Practices:
The following two topic-wide recommended practices were identified:

APP-RP-25: Agency Development and Support Platforms – An
agency’s architectural strategy should define the available
development and support platforms and the process for
selecting the appropriate platform. Examples of development
and support platforms are:
• Enterprise Framework Platform – supports n-tier

development of service-oriented architecture for large-
scale or complex applications that need to support high-
volume usage and/or long life spans.

• N-tier Platform – supports applications that are not large-
scale, complex and do not require high-volume usage
and/or long life spans. Generally developed by Business
Analysts by using visual based tools that provide
automated code generation.

• Collaborative Platform – many business needs do not
require scalable or highly available solutions. These
needs can be often met by Workflow and Forms
Automation tools.

APP-RP-26: Agency Standardized Technology Stacks – Agencies

should develop a limited number of standardized application
development toolsets (“standardized technology stacks” or
“hardened” architectural patterns). Technology Stacks serve
as reusable technology packages that contain a complete (A
- Z) integrated/best-of-breed set of development tools,
frameworks and platforms needed to develop and support an
application/solution. Examples:
• N-tier Technology Stack
• Collaborative Technology Stack
• Business Intelligence (BI) or Analytical Technology Stack

Objectives:
• Improve how the Commonwealth designs systems in order to have modern,

common, and effective platform reuse.
• Improve how the Commonwealth converse/collaborate in the design and

sharing of experiences/practices/services.
• Improve how we articulate the benefits of systems built on platforms that are

composed of standards, Patterns and services.
Rationale:

Page 34 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Standardized system analysis, design, and development tools will help IT
managers create a consistent and repeatable systems development life cycle,
resulting in a predictable and efficient process that will improve over time.

• An eventual standardized development environment will result in long-term
cost savings and elimination of redundancies in data management and systems
design.

• Standard tools will ensure continuity in the systems development life cycle
across contractor transitions. Contractors will be required to use the standard
Agency tools rather than their own preferred tools.

• Toolsets that align with the agency architecture and development philosophy
will better support end-to-end design, development, and deployment of
applications.

• Historically, project teams selected tools first, and then had to live with the
architecture those tools supported. That led to the problem of the tools driving
the architecture, and thus the business, rather than the business requirements
mandating the tools.

• Reduces total cost of ownership.
• Produces higher quality solutions
• Avoids disjointed steps in the software engineering process
• Helps automate proper technical documentation
• Documents metrics that facilitate process improvement

The Development and Support Platforms topic includes the following components:

• Enterprise Framework Platform
• Collaborative Platform
• Development Languages
• Coding Guidelines and Standards
• The following will be addressed in future versions of this report

o Wireless/Mobile Platform - Java 2 Platform, Micro Edition (J2ME)
• J2EE Guidelines
• .NET Guidelines

o Integrated Development Environment (IDE)
o Plug-ins: Application Program Interface (API)/Protocol
o Object Relational (OR) Mapping
o Application Platform Servers/Enterprise-Scope Application Platform

Suites
o Web Portal (includes Enterprise)

Enterprise Framework Platform

Java 2 Platform Enterprise Edition (J2EE) and .NET are the two dominant distributed
computing architecture frameworks. J2EE provides portability of a single language (Java)
over multiple operating systems and hardware platforms. .NET supports a wide range of
languages but is primarily tied to the Microsoft Windows operating system and Intel
hardware.

Page 35 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Recommended Practices:
The following three recommended practices were identified:

APP-RP-27: Recommended Enterprise Frameworks – The
Commonwealth’s recommended Enterprise Frameworks are
.NET and J2EE.

APP-RP-28: Use of Enterprise Frameworks – Agencies new large,

complex applications (either developed or purchased COTS
solutions), that are anticipated to have high usage volumes
and/or long life spans should utilize an Enterprise
Framework in the development of applications and services.

Rationale:
• Frameworks provide an efficient, distinct, reusable, and unified software

infrastructure.
• Frameworks include presentation services, server-side processing, session

management, business logic framework, application data caching, application
logic, persistence, transactions, security, and logging services for applications.

• Frameworks provide platforms, tools, and programming environments for
developing multi-tiered distributed applications.

• Frameworks provide support for the creation of Web services.

APP-RP-29: Use of N-tier Architecture – Agencies large, complex
applications (either developed or purchased COTS
solutions), that are anticipated to have high usage volumes
and/or long life spans should utilize an n-tier architecture and
support a future implemented service-oriented architecture
(SOA).

Rationale:
• While many problems inherent in the State’s existing monolithic and two-tier

applications could be overcome by implementing applications with a three-tier
architecture, the Commonwealth will be better served by an n-tier service-
oriented architecture.

• N-tier applications are easily modified to support changes in business rules.
• N-tier applications are highly scalability, availability, and manageability.
• An n-tier architecture offers the best performance of any application

architecture.
• Any combination of user interfaces (e.g., character, graphical, web browser,

and telephone interfaces) may be implemented in an n-tier application.
• N-tier applications are less expensive to build and maintain because much of

the code is pre-built and shared by other applications.
• Enables simplification of the environment and geographical independence of

servers.
• Takes advantage of modular off-the-shelf components.
• Reuse will lower costs and maintenance efforts.

Page 36 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Allows for leveraging skills across the enterprise.
• The ability of an n-tier application to adapt to changing business needs

ensures longevity of the applications useful life.

Collaborative Platform

Collaborative Platform consists of Workflow Automation and Forms Automation.

Workflow Automation: the automated management of the flow of material, information,
and knowledge through a well-defined process. The core of workflow is the automation
of information-based tasks and activities, but workflow processes must also be able to
keep track of non-electronic objects through their association with electronic
identification (for example a barcode). Knowledge is captured in the rules that are
embedded in the automated processes during its creation. These rules include schedules,
priorities, routing paths, authorizations, security and the roles of all the people and
computer systems in the process. The development environment for workflow includes
analysis and design tools that facilitate change through rapid deployment of workflow
applications and reuse of process elements.

Forms Automation: defines the set of capabilities that support the creation, modification
and usage of physical or electronic documents used to capture information within the
business cycle. Forms automation includes:

• the use of workflow technologies for the automatic routing of electronic forms (e-
forms) among a group of people responsible for processing them;

• the initiation of fully automated processing of information contained on e-forms;
• the validation or insertion of data on e-forms via database look-up;
• combinations of these three functions;
• plus audit trail creation,
• exception notifications and archive functions.

Workflow standards developed by the Workflow Management Coalition are expected to
provide interoperability between workflow software and applications as well as between
different workflow systems. As is normally the case, international standards are not
consistently implemented from one product to the next. Careful assessment of integration
issues will be necessary especially to facilitate decisions for multi-agency event-driven
systems.

Principle:
The following one principle was identified:

APP-P-03: Workflow Systems Conformance – Agencies should
implement workflow systems that conform to the interface
specifications of the Workflow Management Coalition
(WfMC).

Rationale:
• The Workflow Management Coalition (WfMC) has established a framework for

Page 37 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

workflow standards. This framework contains interoperability and communication
standards that enable allow multiple workflow products to coexist and inter-
operate. This framework includes five interface specifications:
1. Process Definition Tool.
2. Workflow Enactment Services.
3. Workflow Client Applications.
4. Invocation of Native Applications.
5. Workflow Package Interoperability

Recommended Practices:
The following four recommended practices were identified:

APP-RP-30: Provide Basic Collaboration Services – An agency-
standardized set of basic collaboration services should be
provided to all employees as required to meet business
needs.

Rationale:
• Increases productivity.
• Reduces costs of maintenance.
• Provides the basis for multi-agency or Enterprise-wide business initiatives.
• Provides for universal employee access to information.
• Leverages the investments made in technology.

APP-RP-31: Selection of Workflow Automation Tools – Agencies

should select workflow automation tools that provide
monitoring of work-in-process and reporting of production
statistics.

Rationale:
• Workflow technologies should support the capability to collect, analyze, and

report metrics.
• Workflow automation tools can be used to identify inefficiencies and

bottlenecks within the workflow/process.
• Workflow automation tool features can be used to identify problems allowing

management the opportunity to balance and modify the workflow.

APP-RP-32: Document Workflow Through Use Cases – Agencies
should define and document business and workflow
processes through use cases.

Rationale:
• Workflow automated business processes need to be defined clearly, concisely,

and unambiguously.
• Use cases describe workflow processes from a business perspective.
• Use cases document agreed upon business goals, participants, and outcomes

of a business process/workflow.
• Use cases provide definition of the automated and manual processes required

by the workflow.

Page 38 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

APP-RP-33: Classify Collaborative System Content – When
designing collaborative systems (e.g. document
management, workflow), the content that will move through
the system should be classified according to applicable
statutes, policies and regulations pertaining to availability,
retention and security.

Rationale:
• Information in collaborative systems is another type of Commonwealth

information that must be managed according to the same principles of
stewardship as structured data.

• The Commonwealth must minimize the exposure and liability of
mismanaging information stored in collaborative systems.

• To make information easily shared, it must be classified.

Development Languages

There have been thousands of different programming languages and new ones are created
every year. Every language has its strengths and weaknesses. For example, FORTRAN
was (and still is) a particularly good language for processing numerical data, but it does
not lend itself very well to organizing large programs. Pascal was very good for writing
well-structured and readable programs, but it is not as flexible as the C programming
language. C++ embodies powerful object-oriented features, but it is complex and difficult
to learn.

The Commonwealth will continue to use specialized development languages as required
to meet special needs (example: FORTRAN for engineering applications). With the
exception of these special needs applications, in-house development should use
languages that are consistent with the creation of SOA n-tier solutions on Enterprise
Framework Platforms such as .NET and J2EE.

Technology Component Standard

The technology component standard table below provides strategic technology directions
for agencies that are acquiring languages used in the development of new large, complex
applications that are anticipated to have high usage volumes and/or long life spans.

Page 39 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Table APP-S-01: Languages used in developing new large, complex
applications anticipated to have high usage volumes and/or long life spans

Technology Component Standard
 Strategic:

Java, Visual Basic, C++, VB.NET
Fortran (for engineering applications only)

 Emerging:

 Transitional/Contained:

Cobol, Power Builder, PL/SQL, Delphi, MAPPER (BIS, Cool Ice)
 Obsolescent/Rejected:

Assembler, C, Clipper, Basic, PL/1
Exception History:

Coding Guidelines and Standards

Coding Guidelines and Standards (also called programming style or code convention)
describe conventions for writing source code in a given programming language.

Recommended Practice:
The following recommended practice was identified:

APP-RP-34: Adopt Coding Standards – Agencies should adopt coding
standards for all widely-used languages and platforms.

Rationale:
• Coding standards make debugging and maintenance easier.

Examples:
• Naming conventions: variables, constants, data types, procedures and

functions.
• Code flow and indentation.
• Error and exception detection and handling.
• Source code organization, including the use of libraries and include files.
• Source code documentation.

Requirement:
The following one requirement was identified:

APP-R-12: J2EE and .NET Guidelines – The Commonwealth
shall research and publish recommended practices
supporting agency development of
applications/solutions using J2EE and .NET Enterprise
Frameworks.

Page 40 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Software Engineering

Software Engineering is the application of best-practice processes and methods of design
to the development and maintenance of software applications/solutions. Software
engineering covers not only the technical aspects of building software systems, but also
development management issues, such as testing, modeling and versioning.

Principles:
The following two principles were identified:

APP-P-04: Adopt Consistent Software Engineering Practices – The
Commonwealth shall create, adopt and utilize consistent
software engineering practices and methods based on
accepted industry standards.

Rationale:
• Reduces training costs.
• Leads to benchmarks for measurement.
• Enables improved quality assurance.
• Facilitates the reuse of programming modules and code.

APP-P-05: Deploy Event-driven Applications – The Commonwealth

should deploy application systems that are event-driven
(driven by business events), employing a real-time
processing methodology versus batch processing.

Rationale:
• Increases adaptability.
• Business processes are a series of business events.
• Business process changes involve the adding, removing, or changing of

business events.
• Increases linkage to the business.
• Mirrors the actual business environment.
• Easier to realign IT when change occurs.
• Real-time event processing supports rapid response to business events and an

up-to-date data environment.
• Real-time event processing is essential to 7 days a week and 24 hours a day

operations, ensuring that customers have access to current data on an as-
needed basis.

Recommended Practice:
The following one recommended practice was identified:

APP-RP-35: Fully Documented Requirements – Systems/solutions
should be created based on fully documented requirements
that are reviewed and approved by the business
owner/sponsor. These documented requirements should be
maintained throughout the software development life cycle.

Page 41 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Requirements:
The following four requirements were identified:

APP-R-13: Commonwealth Web and Accessibility Standards –
Public-facing and Web applications (Intranet and
Internet) shall comply with Commonwealth Web and
Accessibility Standards as applicable.

Rationale:
• Persons with disabilities will be able to use all applications.
• A consistent user interface can improve user productivity by supporting

integrated use of applications.
• A consistent user interface also facilitates training staff on how to use new

applications. Ease of use will improve productivity.
• Training will be less costly and time consuming.
• Staff will intuitively learn new applications.
• Applications using a consistent interface will be more readily accepted and

used.
• A consistent user interface promotes application portability and facilitates

development of future applications.

APP-R-14: Public Web Applications Browser Independent –
Agency public-facing web-based solutions shall be
browser independent (the functionality of the application
can not be restricted to a single browser).

Rationale:
• Utilizing browser specific features can limit the solution audience and can

lead to vendor dependencies.
• Solutions developed for a specific browser will have higher support costs

when other browsers or version upgrades are required in the future.

APP-R-15: Maintain Application Code Documentation – All
newly developed applications shall have their code
documented. This documentation shall be maintained
throughout the product life cycle.

APP-R-16: Accessible and Transferable Repositories – All

electronic repositories of source code, metadata,
development artifacts, models, documentation, etc.
shall have their contents accessible either by an export
facility or direct access method. This ability is required
to allow the repository contents to be transferred from
one methodology or tool to another as needed.

Page 42 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

The Software Engineering topic includes the following components:

• Software Development Methodologies
• Application Architecture and Design
• Modeling
• Business Rules
• Reusable Components
• Configuration Management
• Test Management
• Schedule and Task Management
• The following will be addressed in future versions of this report

o Business Process Execution Language (BPEL) and other business modeling
tools

o Presentation/Interface
o Defect Tracking
o Change Management
o Deployment Management
o Requirements Gathering: Functional and Non-functional
o Requirements Management and Traceability

Software Development Methodologies

Software development methodologies provide a framework that is used to structure, plan,
and control the process of developing an information system. The advancement of new
technologies has evolved new methodologies that allow both rapid and flexible delivery.
Methodologies can be divided into several groupings:

Linear: SDLC and Waterfall
Iterative: Prototyping, Spiral, Rapid Application Development
Rapid Response: Extreme Programming and Adaptive Software Development
Parallel: Alternative Path

The linear methodology group represents the more traditional model and is best suited
for projects exhibiting the following characteristics:

1. Clear project objectives
2. Stable project requirements
3. Knowledgeable user
4. No immediate need to install
5. Inexperienced team members
6. Fluctuating team composition
7. Less experienced project leader
8. Need to conserve resources
9. Strict requirement for approvals

Page 43 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

The Iterative approach provides both for prototyping or a more complex method such as
spiral.

The Rational Unified Process (RUP) is an iterative software development process created
by the Rational Software Corporation, now a division of IBM. The RUP is not a single
concrete prescriptive process, but rather an adaptable process framework. As such, RUP
describes how to develop software effectively using proven techniques. While the RUP
encompasses a large number of different activities, it is also intended to be tailored, in the
sense of selecting the development processes appropriate to a particular software project
or development organization. The RUP is recognized as particularly applicable to larger
software development teams working on large projects.

Prototyping lets users work with a small-scale mock up of their system, experience how
it might function in production, and request changes until it meets their requirements.

1. Project objectives are unclear
2. Functional requirements are changing
3. User is not fully knowledgeable
4. Immediate need to install something
5. Experienced team members (particularly if the prototype is not throw-away)
6. Stable team composition
7. Experienced project leader
8. No need to absolutely minimize resource consumption
9. No strict policy or cultural bias favoring approvals
10. Analysts/users appreciate business problems involved, before they begin

project
11. Innovative, flexible designs that will accommodate future changes are not

critical

Where Spiral model is highly customized to each project, and thus is more complex.

1. Risk avoidance is a high priority
2. No need to absolutely minimize resource consumption
3. Project manager is highly skilled and experienced
4. Policies or cultural bias favor approvals
5. Project might benefit from a mix of other development methodologies
6. Organization and team culture appreciate precision and controls
7. Delivery date takes precedence over functionality, which can be added in later

version

Page 44 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Rapid Response methodologies are aimed at creating a lighter, faster, more flexible and
responsive approach to development.

1. Rapid installation of the bulk of the system is not a critical goal
2. Users have ability to make rapid, binding decisions
3. Users are flexible and willing to work through many small implementations
4. Collaborative team atmosphere
5. Team with substantial system design experience
6. Experienced project leader
7. Minimal pressure to conserve resources with some model

With Parallel models, different approaches are tried at the same time by different
individuals or teams, and then as the project progresses, less productive paths are pruned.

1. Rapid installation is a primary goal
2. Solid, experienced team
3. Strong project management
4. Excellent project-related communications
5. Stable team composition
6. Experienced project leader
7. Little pressure to conserve resources
8. Uniquely flexible development team

It is considered a best practice to use an established software methodology determined by
project risk, maturity of user requirements, project leader experience, team stability and
technical expertise, schedule, and budget to develop information systems. The methods
and criteria provided above are not all inclusive but are provided as a launching point to
assist in selection of a software development methodology.

Recommended Practice:

APP-RP-36: Chose Appropriate Development Methodology –
Agencies should chose an appropriate established software
development methodology based on project risk, maturity of
user requirements, project leader experience, team stability
and technical expertise, schedule, and budget.

Rationale:
• Software development methodologies provide a framework that is used to

structure, plan, and control the process of developing an information system.
• The advancement of new technologies has evolved new methodologies that

allow both rapid and flexible delivery (ie, Iterative and Rapid Response).
• Traditional linear methodologies (ie, Waterfall and SDLC) are most

appropriate for projects with stable requirements and long-term
implementation schedule.

Page 45 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Application Architecture and Design

There are five different application architectures currently within the Commonwealth:

1. Monolithic Applications
Monolithic applications are applications where the code that implements the business
rules, data access, and user interface are tightly coupled together as part of a single, large
computer program. A monolithic application typically is deployed on a single platform,
often a mainframe or midrange computer. There are examples of monolithic applications
running on smaller systems - or even distributed across multiple machines. The
determining characteristic of a monolithic application is that the code is tightly coupled
and highly interdependent.

Monolithic computer applications are deployed across Virginia. Since the
Commonwealth provides many different services to its citizens, there are many computer
applications to support those services. In most cases, these applications were developed
independent of each other using different combinations of technology. For example, one
agency application may use COBOL, CICS, and VSAM. Another application to support
the same group of citizens may use COBOL and IMS.

Monolithic applications have several drawbacks:

• It is costly and time consuming to modify monolithic applications.
Changing one piece of code that implements a business rule, accesses data, or
provides an interface to users or other systems likely impacts other code in the
application. When any code in a monolithic application changes the entire
application must be re-tested and re-deployed.

• It is difficult to integrate monolithic applications to share services and data.
Most monolithic applications do not have well-defined interfaces that can be
accessed by other applications or new user interfaces.

• There is little reuse of redundant code between monolithic applications, making it
more expensive to build and maintain them.

• Many monolithic applications contain functionality already replicated in other
applications. Monolithic applications are slower and more costly to build because
existing functionality must be reinvented many times. Monolithic applications are
more expensive to operate, since the same data often has to be gathered, entered,
and stored in many places.

• It is difficult to have monolithic applications communicate with other
applications.
Most existing applications do not have the ability to communicate with other
applications, within an agency, and with applications in other agencies.

• Monolithic applications can be accessed using only a single user interface.
Most monolithic applications were developed to be accessed via mainframe
terminals. Having a single user interface is a limitation when application services
need to be accessed from other user interfaces such as Web browsers or the
telephone (via IVRs).

Page 46 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• There is little flexibility where monolithic applications can be deployed.
Most monolithic applications must be deployed on a single machine type, for
example a mainframe. This could be because either the software code is tightly
coupled to that machine type or the mainframe is needed to get enough processing
capacity to process all parts of the application: the user interface, the business
rules, and the data access code.

2. Two-tier client/server applications
Some agencies have attempted to overcome the business impact of monolithic
applications by adopting client/server technology for new applications. The terms
“client/server”, “client”, and “server” are often misunderstood. Many believe that
“client/server” means an application with a graphical user interface and a relational
database. Neither is necessarily true. In fact, client/server applications are constructed of
software “clients” that, in order to perform their required function, must request
assistance - “service” - from other software components known as “servers.” Middleware
provides communication between the client and server.

Early client/server applications used architectures dictated by the tools used to write
them. As a result, most early applications used a two-tier client/server architecture. The
“tiers” of client/server applications refer to the number of executable components into
which the application is partitioned, not to the number of platforms where the executables
are deployed. Sometimes, the tiers into which the application is partitioned is called
“logical partitioning”, and the number of physical platforms on which it is deployed is
called “physical partitioning.”

In two-tier client/server architecture, application functionality is partitioned into two
executable parts, or “tiers.” On one model, one tier contains the code that implements a
graphical user interface (GUI) and the code that implements the business rules. This tier
executes on PCs or workstations and requests data from the second application tier,
which usually executes on the machine where the application’s data is stored. This
model is referred to as two-tier, fat client. Though while the application has two tiers of
executable code, most of the code is contained in the tier executing on the workstations -
the “fat client.”

Since business rules are tightly integrated with user interface code, the code that
implements the business rules must be deployed on the same platform(s) as the user
interface. Thus, the entire workstation-resident portion of an application must be re-
deployed if a business rule or the user interface changes. If the number of workstations is
high or the workstations are geographically dispersed, the maintenance costs for two-tier,
fat client applications can escalate quickly.

A second model for two-tier client/server applications has much of the code that
implements the business rules tightly integrated with the data access code, sometimes in
the form of database stored procedures and triggers. This model is called two-tier, fat
server.

Page 47 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Two-tier, fat server applications are often implemented as mainframe applications with
Web browsers as user interfaces. This approach may be a useful first step to migrate to a
three-tier or n-tier service-oriented application architecture. Users can enjoy the speed
and ease-of-use provided by the web’s graphical interface while developers update other
parts of the application.

Since the business rules in two-tier applications are tightly integrated with the user
interface code or data access code, two-tier client/server applications have the following
drawbacks:

• Two-tier client/server applications are difficult and expensive to modify when
business requirements change.
The business rules tend to be monolithic. Changing a business rule may impact
other business rules and the rest of the application.

• There is little reuse of redundant code in two-tier client/server applications.
It is difficult to reuse business rules elsewhere (e.g., in other computer
applications that require similar services or in batch processing that is part of the
same application) when they are tightly coupled to each other and to the user
interface (fat-client) or the data (fat-server).

• There is little flexibility in selecting the platforms where the two-tier client/server
applications will be deployed.
In two-tier, fat client applications, the business rules must execute on the same
platform as the user interface because the code they are implemented in is tightly
coupled with the interface. Likewise, in two-tier, fat server applications, the
business rules can only execute on the machine that hosts the database because
they are implemented either with or inside the database.

• Users only can access two-tier client/server applications with PCs running a
graphical user interface.
Since the user interface is graphical and requires a workstation, users with other
I/O devices are excluded from using the application. These devices include
existing non-graphics terminals (e.g., UNIX terminals or mainframe terminals),
telephone interfaces via IVRs, and new user interface devices still evolving (e.g.,
PDAs and other mobile communications devices).

• Two-tier client/server applications can be more difficult to manage than
monolithic applications.
Changes to either business rules or the GUI often mean that the entire
workstation-resident portion of the application must be redistributed and
reinstalled on every workstation that uses the application. Such software
distributions can be time-consuming, costly and logistically difficult to manage.

3. Three-tier client/server applications
Three-tier client/server applications are partitioned into three executable tiers of code: the
user interface, the business rules, and the data access software. This does not mean that
the three tiers execute on three different platforms. Although it is also possible to deploy
the business rules on the same platform as the user interface in a three-tier architecture, it
is not recommended because of the software management problems associated with using

Page 48 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

many or dispersed user workstations.

Three-tier client/server applications offer the following advantages:

• Three-tier client/server applications can be easier to modify to support changes in
business rules.

• With three-tier client/server applications, there is less risk in modifying the code
that implements any given business rule.

• Three-tier client/server applications can be made to support multiple user
interfaces: character, graphical, web browser, telephones, and others.

4.N-tier Service-Oriented Architecture
Many problems inherent in the Commonwealth’s existing monolithic and two-tier
applications can be overcome by implementing applications with a three-tier architecture.
However, large, complex projects that are anticipated to have high usage volumes and/or
long life spans may be better served by an n-tier service-oriented architecture.

In the n-tier service-oriented architecture, applications are partitioned into discrete
functional units called “services.” Each service implements a small set of related business
rules or function points. If a business rule must be modified to support changing business
requirements, only the service that implements that business rule is impacted. The
remainder of the application remains intact. The adaptability of applications is further
enhanced by the use of an n-tier shared services architecture that segments rule
processing into a series of services that can be accessed individually.

The maximum benefits of n-tier architecture are realized when many n-tier applications
are deployed across the Commonwealth, sharing common software services and offering
multiple user interfaces. In this environment, any application can access any service,
provided the user has the proper security permissions. In n-tier service-oriented
application architecture:

• Some services will be shared by applications from multiple agencies.
• Others services will be shared by applications within a single agency.
• A few, highly specialized services may be developed, at least initially, for a

specific application.

Since the business rules are implemented as separate executables, any combination of
business rules may run on any combination of platforms. This offers flexibility in
selecting the platforms where the application components can be deployed, resulting in a
high degree of scalability. As transaction loads, response times, or throughputs change,
an individual service can be moved from the platform on which it executes to another,
more powerful platform.

Since business rules are implemented discretely instead of being tightly integrated with
the graphical user interface, changes to business rules typically do not require updates of
code on the workstations accessing the application. This is very important in managing an
application with many, geographically dispersed workstations.

Page 49 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Also, since business rules are implemented in discrete services, the same business
rule can be invoked by users accessing the application from a GUI, from character
terminals, from web browsers, by telephone from IVRs or by batch jobs. A separate
interface tier provides programmer productivity and consistency of application
behavior.
N-tier service-oriented applications offer the following key advantages:

• N-tier service-oriented applications are highly scaleable.
• An n-tier service-oriented architecture offers the best performance of any

client/server.
• N-tier service-oriented applications offer the highest potential for code reuse and

sharing.

The greatest strength of a service-oriented architecture is the opportunity it provides for
the repeatable, rapid development of new applications.

5.Web-enabled Applications
There are two types of web-enabled applications. Some web-enabled applications
provide information to clients in page format using HTML and XML to manage
content dynamically. Other Web-enabled applications have fully interactive
functionality and near real-time transaction processing capabilities.

Web-enabled applications are a special case of client-server applications where the
“client” is a standard Web browser like Microsoft Internet Explorer or Firefox. The
browser serves as another type of user interface (thin client) in the three-tier or n-tier
application. Use of a standard Web browser as the client provides the user with a
familiar, intuitive interface and significantly simplifies the process for developing and
distributing the user interface.

Ideal web-enabled applications for the Commonwealth are n-tier service-oriented
applications that use:

• An industry standard Web browser as the thin client;
• Intranets to provide secure access by Commonwealth employees;
• Extranets to provide restricted access by selected business partners; and
• The Internet and firewall technology to provide managed access by citizens and

other interested parties.

Web-enabled applications will continue to grow in importance as a means to timely and
cost effective delivery of information to the Commonwealth’s employees, business
partners and citizens.

Web browsers are applications that accept text in the form of HTML/XML statements.
The HTML/XML is interpreted and the file is presented on the desktop screen in web
page format based on the corresponding HTML/XML. Web pages can contain hyperlinks
to other documents, and multimedia such as text, images, audio and video.

Page 50 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

The web started out as an environment for publishing static pages using HTML. Early on,
the notion of enabling interactive, transaction oriented applications via the same browser
became attractive since it could eliminate the need to install client software on every
user’s workstation. Browser technology supports the execution of programs written in
scripting languages embedded in an HTML page. Browser technology also supports the
execution of programs written in scripting languages including JavaScript, VBScript and
others. Browsers may also support the running of Java Applets in the context of a Java
Virtual Machine (may require a plug-in).

Recommended Practices:
The following ten recommended practices were identified:

APP-RP-37: Analyze Business Processes – Business processes will
be analyzed, simplified or otherwise redesigned in
preparation for and during new development, acquisition
or major enhancement of information systems. The
emphasis should be on process improvement, not just
applying new technology to old processes.

Rationale:
• Work processes should be more streamlined efficient and cost effective.
• Work processes, activities, and associated business rules will be well

understood and documented.
• Systems should no longer be developed using antiquated work processes.
• Systems should be most responsive to business needs.
• Enables E-Government initiatives.
• Potentially reduces the total cost of ownership.
• Provides better customer service.
• Facilitates the development of software using business rule based tools.

APP-RP-38: Architected Before Designed – Systems should be

architected before they are designed. Systems architecture
documentation should be verified for Commonwealth and
agency Enterprise Architecture compliance.

APP-RP-39: Object-oriented Design and Structure – Applications

should be based on object-oriented design and structure, in
which objects encapsulate data structures and present a
functional interface to application logic.

Rationale:
• Objects create a functional interface to data elements and permit developers to

modify access methods and underlying data structures independent of the
application.

• Object-oriented design supports re-use of objects across many applications
and improves flexibility.

Page 51 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Object-oriented design supports the reuse of application components in the
development and maintenance of systems.

• It speeds development and modification and improves flexibility.
• Objects will allow for easier adaptation of business process changes.
• Objects utilize data encapsulation and permit developers to modify the

underlying data structures and methods independent of the interface to the
object.

• All industry leading application development tools are either object-oriented
or object-based.

APP-RP-40: Standards-compliant System Components – Information

systems should be designed and implemented using
standards-compliant system components.

Rationale:
• Use of standards-based components supports incremental acquisition of

systems.
• It assures that new and redesigned systems will be open. They will be

upgradeable because old components can be replaced with new improved
components that use the same standard interfaces.

• Standards-based components, using supported standards-compliant products,
will keep product support costs manageable.

APP-RP-41: Isolate Business Logic from Data – Business logic should

be isolated from the data by implementing a discrete data
access layer. This logical boundary between business logic
and data should not be violated.

Rationale:
• Isolated business logic can exist well beyond the lifetime of any system using

it, substantially increasing ROI and encouraging component reuse.
• Agencies can maintain better control over data integrity by developing

applications that allow only business rules to control access to data.
• Data cannot be managed consistently if multiple processes or users access it

directly.
• A change in a database or application can potentially affect many large

programs, if they are not highly partitioned.
• Partitioning isolates/minimizes change impact.
• Partitioned code is more adaptive to changes in internal logic, platforms, and

structures.

APP-RP-42: Document Application Design – The design of all
applications should be documented. This documentation
includes: Object models, interaction diagrams and other
design artifacts that record the structure, behavior and
interfaces of application solutions.

Rationale:

Page 52 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• These are important deliverables of the development process that can benefit
future efforts.

• The application design is an asset of the development process, facilitates
extensibility and adaptability, and provides for future reuse.

• A documented design can be used as a training tool for new employees or
consulting staff.

APP-RP-43: Design Platform Independent Components – Agencies

should design applications, services and components that
are platform independent if possible.

Rationale:
• Designers and operations support staff should make deployment decisions.
• Minimizing platform dependence builds in adaptability and scalability.
• Platforms change over time and platform dependent solutions will need to be

reconfigured or redeployed.

APP-RP-44: Data Entered Once. Agencies should design
application/solution so that data is entered once, and only
once, as close to its source as possible.

Rationale:
• Data collection burdens for both the agencies and its customers will be

reduced.
• The level of effort for managing data will be reduced.
• Duplicate and inconsistent database copies will be eliminated.
• Redundancies in collection, storage, processing, and dissemination of data

will be eliminated.
• Costs will be reduced in the long term.

APP-RP-45: Facilitate Monitoring and Measurement – Applications

and infrastructure components should be designed and
implemented to facilitate monitoring and measurement.

Rationale:
• To assure an appropriate return on IT investments, agencies must be able to

measure the performance of these investments.
• Consistent business management information will result in better investment

management decisions, thus better returns on investment.

APP-RP-46: Take Advantage of Enterprise System Management
Recommended Practices – Agencies should design
applications, components and services so they take
advantage of the Commonwealth’s Enterprise System
Management recommended practices.

Page 53 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Modeling

Modeling is the process of representing entities, data, business logic, and capabilities for
aiding in software engineering. Use of object modeling principles and supporting tools
are crucial to the successful implementation of large-scale object-oriented applications.
Modeling tools that support industry standard UML are recommended. Ideally the tool
integrates with the developer’s IDE enabling roundtrip engineering between class
diagrams and the code.

Recommended Practices:
The following two recommended practices were identified:

APP-RP-47: Adopt Standard Work Process Modeling Tools –
Agencies should select and adopt standard work process
modeling tools for use in business process re-
engineering efforts.

APP-RP-48: Utilize UML. Agencies should use a standardized modeling

tool that utilizes the Unified Modeling Language (UML).
Rationale:

• Aligns business requirements and application functionality.
• Modeling can identify opportunities for increased efficiency.

Business Rules

Business rules are abstractions of the policies and practices of a business organization.
The business rules approach is a development methodology where rules are in a form that
is used by, but not embedded in business process management systems. The Busiiness
Rules Approach formalizes an enterprise’s critical business rules in a language the
manager and technologist understand. Business rules create an unambiguous statement of
what a business does with information to decide a proposition. The formal specification
becomes information for process and rules engines to run.

Business rules support agency business processes. The rules:

• automate the process,
• define what must be done, and
• define how it must be done.

Business events which are the triggers for business rules, define when it should be done.

As agency business processes change, the business rules in the applications that
support the agencies also must change.

Page 54 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Recommended Practices:
The following four recommended practices were identified:

APP-RP-49: Assign Business Rule Responsibility to Business –
Agencies should assign responsibility for defining and
maintaining the integrity of business rules to the business
units.

Rationale:
• IT staff is responsible for coding and administering the software that

implements business rules.
• The business units are responsible for the definition and integrity of business

rules, and for communicating changes in business rules to IT.
• Business subject matter experts (SME) should manage the process

requirements
• Optimally every business rule should be assigned to a custodian or steward.

APP-RP-50: Business Rule Components Platform-Neutral – Business

rule application components should be platform-neutral.
Rationale:

• Implement business rules in a non-proprietary, cross-platform language.
• This approach makes platform independence and portability possible.

APP-RP-51: Implement Business Rules as Discrete Components –

Agencies should implement business rules as discrete
components.

Rationale:
• Business rules need to be executed to ensure the correct policies are enacted

governing the accuracy of related data and the execution of the actions to be
performed.

• By implementing business rules as discrete components, the users can be
assured of proper application of the rules.

APP-RP-52: Access Data Through Business Rules – Applications

should access data through business rules.
Rationale:

• Designing applications so business rules control access to the data assures
accuracy, consistency and reliability.

• Data is created and used by business processes. In computer applications, data
must be created, used by, and managed by the application component that
automates the business process.

• Accessing data in any way other than by business processes bypasses the rules
of the module that controls the data. Data is not managed consistently if
multiple processes or users access it.

• Federated data should be used wherever possible to assure data accuracy and
simplify data management.

Page 55 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Reusable Components

A component is a loosely defined term for a software technology for encapsulating
software functionality. Components must meet the following five criteria:

1. Multiple-use
2. Non-context-specific
3. Composable with other components
4. Encapsulated i.e., non-investigable through its interfaces
5. A unit of independent deployment and versioning

An artifact is a valuable, high quality software work product such as: documentation,
analysis and design models, source code, interfaces, executable binaries, tools, processes,
and test plans.

As part of a systems acquire/develop decision, agencies should first consider the reuse of
existing applications and system components/artifacts. To be successful, agencies must
be able to search for existing applications, components and artifacts that have already
implemented specific business processes.

Recommended Practices:
The following four recommended practices were identified:

APP-RP-53: Shareable Data and Process – Systems should be
designed, acquired, developed, or enhanced such that data
and processes can be effectively shared, for appropriate
purposes, across the Commonwealth and with our partners.

Rationale:
• Increased efficiency will better serve our customers (e.g., the public,

employees, etc.).
• Redundant systems cause higher support costs.
• Ensures more accurate information.
• Shared data and processes lead to better decision-making and accountability.

APP-RP-54: Reuse vs. Create – Agency solutions should be built by

assembling and integrating a collection of reusable, loosely
coupled components and services where appropriate, rather
than by creating or recreating common functionality.

Rationale:
• Provides development efficiency and deployment flexibility.
• Applications designed with reusable components can be developed rapidly

and at lower cost.
• Reduces the risks associated with new applications because the quality of the

reused components has already been validated.
• Tightly coupled components become problematic when they limit the

capability of the application, such as in development, testing, and deployment
of the application.

Page 56 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Reusable components increase the productivity (reducing cost and time to
market) of the application development departments within the enterprise.

• The use of proven components enhances the quality of solutions.
• The adoption by the Commonwealth of a service-oriented architecture (SOA)

requires development teams to will be able to take advantage of component
and service reuse.

• Components and services can exist within a business unit, an agency or across
agency boundaries.

Definitions:
• Components are fine-grained encapsulated functionality to support common

development efforts.
• Services are course-grained, process-centric, business functions utilized to

carryout a specific task.

APP-RP-55: Reuse or Share Cross-Functional Systems – Agencies
should implement cross-functional systems that take
advantage of common software modules that may be shared
and reused for similar business functions.

Rationale:
• Many agencies and business units share common work processes with similar

information requirements (e.g. licensing, processing applications, making
awards) and may be able to reuse applications, data, and related information
technology across the Commonwealth.

• Common software modules may be reused for similar functions.
• Systems based on standard software modules can be implemented faster and

with better quality than systems based on newly designed components.
• An enterprise-wide, cross-functional review will identify similar functions,

thus eliminating duplicative design and development activities.
• Office work processes will need to be reengineered to support common

functions and common software module usage; efficiencies may be expected
as a result.

APP-RP-56: API Provided for All Reusable Components – A well-

documented Application Programming Interface (API) should
be provided for all reusable components.

Rationale:
• A documented API is how components/services and applications should

communicate.
• API documentation should include parameter specifications such as: input,

output, optional/required, lengths and type.
• Writing to standard API's protects applications from platform, network and

database changes.

Requirement:
The following one requirement was identified:

Page 57 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

APP-R-17: Search for Existing Business Process – The
Commonwealth Enterprise Architecture shall evolve to
incorporate a search feature that addresses the
customer’s need to locate existing Commonwealth/
agency (excluding higher education) solutions that
implement specific business processes.

Rationale:
• In order for the agencies to be able to first consider the reuse of existing

applications and system components before purchasing or developing
solutions, they must be able to search for those of existing applications and
system components.

Configuration Management

Configuration Management is applicable to all aspects of software development from
design to delivery. It focuses on the control of all work products and artifacts generated
during the development process. Version Management (a subset of Configuration
Management) refers to the tracking and controlling of file versions. It includes
capabilities such as labeling, branching, merging, version content comparisons, and
security and permission management. An initial step on the path to Configuration and
Version Management is to implement a source code repository with supporting processes.

Code management is crucial to maintain application integrity through the development
and maintenance lifecycle. Ideally, code management tools would integrate with defect
tracking and application build tools. The Commonwealth will be researching code
management systems that can scale across the enterprise to foster an environment that
supports reuse of shared components.

Requirement:
The following requirement was identified:

APP-R-18: Source Code Repository – All application source code
shall be maintained in a repository using a formal
process.

Test Management

Test Management is the consolidation of all testing activities and results. Test
Management activities include test planning, designing (test cases), execution, reporting,
code coverage, and heuristic and harness development.

Implementing a comprehensive testing strategy can increase the effectiveness of testing.
The following are five sample testing strategy objectives with recommended approaches:

1. Increase testing efficiency

Page 58 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

a. Establish testing priorities for each project
Priority column should be added to the User Requirement Traceability Matrix.

b. Focus Testing where defects are most likely to exist

Use Configuration Management in combination with the Help desk to focus
testing on code modules that have the greatest number of changes,
complexity, and history of reported defects.

c. Ensure adequate testing coverage

Use the Requirements Traceability Matrix to drive the generation of a Project
Test Plan and SLDC Phase specific “sub” Test Plans.

d. Coordinate testing between SLDC Phases.

Implement Project Test Coordinator Role.

2. Create Testing Environment that supports greater efficiency:

• Research current Testing Environments
• Create Testing Environment Functionality Requirements

3. Migrate from manual to automated testing methods where cost effective:

• Evaluate needs
• Evaluate potential tools
• Explore the possibility of providing shared knowledge/resources
• Initially focus on automating Regression Testing

4. Migrate from Dynamic to Static Testing Methods

It is more cost effective to correct defects in earlier SLDC phases.

See Appendix B: Software Testing Types and Techniques for more information on testing
methodology.

Information on testing tools and approaches to aid in meeting Commonwealth
Accessibility Standards can be found within the Web Accessibility and Template Guide
(WATG) located at http://www.vadsa.org/watg.

Recommended Practice:
The following three recommended practices were identified:

APP-RP-57: Comprehensive Testing Strategy – Agencies should
create and implement a comprehensive testing strategy that
covers the entire development lifecycle. Where appropriate,
the testing strategy should address:
• Functional Testing
• Unit Testing
• Integration
• Business Cycle Testing
• Usability Testing

Page 59 of 94

http://www.vadsa.org/watg

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• Regression Testing (preferably automated)
• Load/Stress/Volume Testing
• Security and Access Control Testing
• Reliability Testing
• Configuration Testing
• Installation Testing
• User Acceptance Testing

APP-RP-58: Automated Regression Testing Solutions – New medium,

large or complex agency applications (either developed or
purchased COTS solutions) should include automated
regression testing solutions where cost-effective.

Rationale:
• Agencies often have sufficient funds to purchase (COTS) or develop an

application, but not enough to thoroughly test the application when updates to
the solution or underlying application platform (operating system, database,
application server) are required.

APP-RP-59: Design to Test – Application components and services

should be designed so they can be tested and debugged
completely with ease.

Rationale:
• Testing is a critical step in the development process.
• Application components with consistent interfaces are easier to test on an

application-wide basis.
• Error handling, tracing, and check-pointing should be included.
• These functions should be implemented in the earliest phases of development.
• Testing performance, fault-tolerance, and security are also important elements

of a test plan.

Schedule and Task Management

Schedule management is a critical component of project planning and control. Schedules
are part of project baselines, and critical milestone completions often are important
project events that are reported to stakeholders. Schedule development and control starts
with the technical scope, assumptions, activity definition, logic sequencing, and duration
estimation. Expert judgment based on similar projects is best applied during these early
steps to determine reasonable schedules and to limit future schedule risk. Techniques
which can improve project schedule performance are high performing software, network
diagrams, critical path determination and analysis, mathematical analysis/ simulation,
resource leveling, conditional scheduling for high risk areas, and duration compression.

Task Management defines the set of capabilities that support a specific undertaking or
function assigned to an employee. Task Management tools provide automation features

Page 60 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

for managing, delivering, assigning, reminding, prioritizing, and collaborating task
management and execution.

Recommended Practice:
The following two recommended practices were identified:

APP-RP-60: Schedule Management Tool – Agencies needing a

schedule management tool should consider acquiring
Microsoft Project/Microsoft Project Professional.

Rationale:
• Microsoft Project and Microsoft Project Professional are de facto standards

within the Commonwealth.

APP-RP-61: Task Management Tool – Agencies needing a task
management tool should consider acquiring Microsoft
Project Server.

Rationale:
• Microsoft Project Server is a de facto standard within the Commonwealth.

Page 61 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Geospatial Technologies

Geospatial Technologies integrate acquisition, storing, editing, displaying, modeling,
analysis, and management of spatially referenced data, i.e. data identified according to
their locations.

The Geospatial Technologies topic includes the following components which: will be
addressed in future versions of this report:

Mapping/Geospatial/Elevation/GPS (GIS
• Integrated Development Environment (IDE)
• Geospatial Data Development Standards
• Database/Geospatial Metadata
• Utilities
• Reporting and Analysis
• Global Positioning Systems (GPS)

Visualization:
• Graphing/Charting

Page 62 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Enterprise Applications

Enterprise Applications are software solutions that perform business and cross-cutting
functions (such as accounting, facilities management or procurement).

The Enterprise Applications topic includes the following components:

• eCommerce
• The following will be addressed in future versions of this report

o Human Resources
o Financial Management
o Assets/Materials Management
o Human Capital/Workforce Management
o Customer Relationship Management
o Customer Initiated Assistance
o Supply Chain Management
o Document Management
o Authentication/Single Sign-on (SSO)
o Search Engines
o Audio and Video Conferencing

eCommerce

Electronic commerce, EC, e-commerce or eCommerce consists primarily of the
distributing, buying, selling, marketing, and servicing of products or services over
electronic systems such as the Internet and other computer networks. The information
technology industry might see it as an electronic business application aimed at
commercial transactions. It can involve electronic funds transfer, supply chain
management, e-marketing, online marketing, online transaction processing, electronic
data interchange, automated inventory management systems, and automated data-
collection systems. It typically uses electronic communications technology such as the
Internet, extranets, e-mail, Ebooks, databases, and mobile phones.
Wikipedia, The Free Encyclopedia. 28 Apr 2006, 02:49 UTC. 1 May 2006, 19:03
<http://en.wikipedia.org/w/index.php?title=Electronic_commerce&oldid=50523647

eCommerce can be broken into four main categories:
• B2C (Business-to-Business: Companies doing business with each other such as

manufacturers selling to distributors and wholesalers selling to retailers.
• B2C (Business-to-Consumer): Businesses selling to the general public typically

through catalogs utilizing shopping cart software.
• C2B (Consumer-to-Business): A consumer posts his project with a set budget

online and within hours companies review the consumer's requirements and bid
on the project. The consumer reviews the bids and selects the company that will
complete the project.

Page 63 of 94

http://en.wikipedia.org/w/index.php?title=Electronic_commerce&oldid=50523647

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

• C2C (Consumer-to-Consumer): There are many sites offering free classifieds,
auctions, and forums where individuals can buy and sell thanks to online payment
systems like PayPal where people can send and receive money online with ease.
eBay's auction service is a great example of where person-to-person transactions
take place everyday since 1995.

G2G (Government-to-Government), G2E (Government-to-Employee), G2B
(Government-to-Business), B2G (Business-to-Government), G2C (Government-to-
Citizen), C2G (Citizen-to-Government) are other forms of eCommerce that involve
transactions with the government--from procurement to filing taxes to business
registrations to renewing licenses.

Virginia.gov is part of the Virginia Information Technologies Agency (VITA) and assists
other Virginia government entities in providing information services via the Internet.
Virginia.gov manages the official Virginia portal at www.virginia.gov or
http://www.state.va.us. See Appendix C: Features and Benefits of the Virginia.gov
Payment Portal for additional information on Virginia.gov.

Recommended Practices:
The following twenty-four recommended practices were identified:

APP-RP-62: Evaluate Virginia.gov Payment Portal – The Virginia.gov

Payment Portal should be evaluated as part of an Alternatives
Analysis for all eCommerce systems developed or purchased
by the Commonwealth/Agencies (not including higher
education). The Alternatives Analysis should provide a
compelling financial or business case justifying the selection of
any other solution.

Rationale:
• The Commonwealth's goal is to create a single window on government with a

common look and feel and consistency across all levels of government.
Utilizing a single enterprise solution helps achieve this objective.

• The Virginia.gov payment portal is an enterprise solution offered through
VITA, which can be used by any government entity in the Commonwealth
(state, city or county).

• There are over 200 instances of the cost effective, secure Virginia.gov
Payment Portal in use today in the Commonwealth" (all instances are hosted
by Virginia.gov)

APP-RP-63: Cardholder Information Security Program and Data

Security Standards – All agencies all entities deploying
online payment applications should follow Cardholder
Information Security Program (CISP) and Data Security
Standards (DSS).

Page 64 of 94

http://www.virginia.gov/
http://www.state.va.us/

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

APP-RP-64: Online Credit Card Payments – Fulfillment type services
(e.g. – online stores) should use a delayed capture approach
for online credit card payments, whereby the transaction is first
authorized, the funds are “held” and upon fulfillment, the funds
are “captured.”

APP-RP-65: Confirm Payment Amount – Payment applications should

include a step for the user to confirm the payment amount,
including any fees. In addition, a printable receipt screen
should be built into the process.

APP-RP-66: Collect Billing Name, Address and Zip Code – Online

payment screens should collect billing name, address and zip
code for increasing verification and ensuring lower merchant
account discount rates.

APP-RP-67: Delayed Capture Approach – If using a delayed capture

approach for credit card payments, online automation of the
delayed capture amount should be equal to or less than the
original purchase.

APP-RP-68: Refunds – Applications that handle refunds should limit the

refunded amount to be equal to or less than the original
purchase.

APP-RP-69: Log All Activity – Payment applications should log all activity

and electronic gateway responses, even for rejected or
declined transactions.

APP-RP-70: Limit the Likelihood of Duplicate Payments – Payment

applications should develop controls to limit the likelihood of
duplicate payments.

APP-RP-71: Secure Coding Guidelines – Payment applications should be

developed based upon secure coding guidelines. (See
www.owasp.org)

APP-RP-72: Cookies – Sensitive payment information should not be stored

in cookies.

APP-RP-73: Server Side Controls – Server side controls should be
implemented to prevent SQL injection and other bypassing of
client side-input controls.

APP-RP-74: Secure Network and Security Standards – Payment

applications should reside on a secure network, including a

Page 65 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

firewall. All routers, switches and firewall configurations
should be secured and conform to security standards.

APP-RP-75: Conduct Network Scans – Entities offering online payment

services should conduct network scans semi-annually to
identify potential vulnerable points.

APP-RP-76: Up-to-date Security Patches – Entities offering online

payments should ensure all servers involved with payment
processing have the most up-to-date security patches,
upgrades and anti-virus software.

APP-RP-77: Transport Customer’s Payment Securely. Payment

applications should transport customers' payment data
securely and reliably. Secure Sockets Layer (SSL) using 128
bit encryption is the industry standard for transmission
encryption and allows information to be sent securely and
reliably over the internet. Pretty Good Privacy (PGP) File
Transfer Protocol (FTP) is the recommendation for Automated
Clearing House (ACH) file transfers.

APP-RP-78: Unique Username and Complex Password – Access to

PCs, servers or databases with payment applications should
require a unique username and complex password.

APP-RP-79: Credit Card Numbers – Full credit card numbers should not

be stored in any form on any server and should be masked on
any non-input screens during the transaction process (receipt
screens and confirmation emails). Only the first two and the
last four digits could be retained to assist with transaction
tracking and customer service.

APP-RP-80: Card Verification Code – If using card verification code

(CVC) numbers for online payment processing, they should
not be stored in any form on any server and should be masked
on any non-input screens during the transaction process.

APP-RP-81: Merchant Account – Merchant account and electronic

gateway information, including logins and passwords, should
be password protected and only available to limited staff with
“need to know” responsibilities.

APP-RP-82: Merchant Unique Password – Entities offering online

payment services should create unique passwords for
merchant and electronic gateway online tools and change
these passwords regularly.

Page 66 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

APP-RP-83: Revoke Terminated Employee Access – Should an
employee, who had access to payment applications or
information, be terminated or quit, the employee’s user
accounts and passwords should be revoked as soon as
practical. Merchant account and electronic gateway
passwords should be changed.

APP-RP-84: Employee Background Checks – Background checks and

investigations are strongly recommended for any employee
with access to payment applications or account information.

APP-RP-85: Encrypt ACH Transactions – ACH transactions should be

stored in an encrypted file that can only be decrypted by the
bank. These files should be regularly purged from the servers.

Page 67 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

(This Page Intentionally Left Blank)

Page 68 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Glossary
Following are Glossary entries pertaining to the Application Domain and required to
support this document. Additional glossary definitions can be found in the ITRM
Technology Management Glossary located on the VITA website here:
http://www.vita.virginia.gov/projects/cpm/glossary.cfm.

Some useful public glossaries can also be found at:
Wikipedia, the free encyclopedia at http://en.wikipedia.org/wiki/Main_Page
Loosely Coupled Glossary at http://looselycoupled.com/glossary/azindex.html

Another excellent glossary can be found at: http://www.matisse.net/files/glossary.html

Agency Any agency, institution, board, bureau, commission, council, or
instrumentality of state government in the executive branch listed in
the appropriation act. ETA requirements/standards identified in this
report are applicable to all agencies including the administrative
functions (does not include instructional or research functions) of
institutions of higher education, unless exempted by language
contained in a specific requirement/standard.

Business
Reference
Model (BRM)

In a service-oriented architecture, all business services are defined in
the business reference model (BRM). The BRM is part of the
Enterprise Repository. One of the key principles behind SOA is to
break down business services into reusable components that can be
combined and shared across the enterprise. These shared components
are called web services and they are defined in the service component
reference model (SRM) which is also located in the Enterprise
Repository. Both the BRM and SRM are hierarchical. The exact
structure of the model will be determined at design time.

Component A readily accessible and observable aspect of a technology topic,
such as Test Management is a component of the Software
Engineering topic. A component is not the individual pieces such as
tables, SQL scripts, etc. and other many similar pieces which make
up the component.

Commercial
off-the-shelf
(COTS)

Commercial off-the-shelf (COTS) is a term for software or hardware
products that are ready-made and available for sale to the general
public. They are often used as alternatives to in-house developments
or one-off government-funded developments (GOTS). The use of
COTS is being mandated across many government and business
programs, as they may offer significant savings in procurement and
maintenance.
Commercial off-the-shelf. Wikipedia, The Free Encyclopedia.
Retrieved 18:10, January 11, 2006 from http://en.wikipedia.org

Page 69 of 94

http://www.vita.virginia.gov/projects/cpm/glossary.cfm
http://en.wikipedia.org/wiki/Main_Page
http://looselycoupled.com/glossary/azindex.html
http://www.matisse.net/files/glossary.html
http://en.wikipedia.org/

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Domain The Enterprise Technical Architecture (ETA) is typically divided into
logical groups of related technologies and components, referred to as
“domains”. The purpose of a Domain Architecture is to provide a
combination of domain principles, best practices, reusable methods,
products, and configurations that represent “reusable building
blocks”. Thus, the Domain Architecture provides the technical
components within the Enterprise Architecture that enable the
business strategies and functions. Note, the Conceptual Architecture
serves as the foundation for the Domain Architectures, and ensures
that they are aligned and compatible with one another.8

Enterprise As used in this document and generally when discussing Enterprise
Architecture topics, the enterprise consist of all Commonwealth of
Virginia agencies as defined above.

ETA The Enterprise Architecture has business and technical components.
All of the technical components taken together are called the
Enterprise Technical Architecture.

ORCA Online Review and Comment Application is a web based application
managed by VITA to allow public comment and review of proposed
policies, standards, and guidelines. ORCA may be accessed through
the Commonwealth Project Management Web page or by pointing
your Web browser to the URL
http://apps.vita.virginia.gov/publicORCA.

Principles High-level fundamental truths, ideas or concepts that frame and

contribute to the understanding of the Enterprise Architecture. They
are derived from best practices that have been assessed for
appropriateness to the Commonwealth Enterprise Architecture.9

Product
Standards

Recommended
Practices

Are specifications for the use of specific hardware and software
relative to the particular component.

Are activities which are normally considered leading edge or
exceptional models for others to follow. They have been proven to
be successful and sustainable and can be readily adopted by agencies.
They may or may not be considered the ultimate “best practice” by
all readers but for this place and time they are recommended
practices and should be used and implemented wherever possible.

Requirements Are activities that are considered strategic components of the
Commonwealth’s Enterprise Technical Architecture. They are
acceptable activities for current deployments and must be
implemented and used for all future deployments.

8 COTS Enterprise Architecture Workgroup, “Commonwealth of Virginia Enterprise Architecture –
Common Requirements Vision”, v1.1, December 5, 2000, p 26.
9 COTS Enterprise Architecture Workgroup, “Commonwealth of Virginia Enterprise Architecture –
Conceptual Architecture”, v1.0, February 15, 2001, p 5.

Page 70 of 94

http://apps.vita.virginia.gov/publicORCA

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Service-
Component
Reference
Model (SRM)

Service component-based framework that can provide—independent
of business function—a “leverage-able” foundation for reuse of
applications, application capabilities, components, and business
services.

Topic A topic is simply a logical subdivision of the domain. All
components relevant to the Commonwealth’s Technical Architecture
are included within one of the identified topics. Within the
Application domain topics include Enterprise Systems Design,
Application Acquisition, Development and Support Platforms,
Software Engineering, Geospatial Technologies, and Enterprise
Applications.

Page 71 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

(This Page Intentionally Left Blank)

Page 72 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Appendix A: Example SOA Centralized Implementation
and Governance Model

The following is an example of a centralized SOA Implementation and Governance
model. It is largely based on the draft California SOA model referenced in the footnotes
and we thank our California colleagues for sharing their work.

1) Decentralized Service Development

Service components would be built and tested by individual departments (for example
DMV, DSS etc). Each service would be submitted for certification to the VITA
Architecture Review (VAR) Group. Upon approval, the service would need to go
through the ICC data center deployment process

2) Centralized Governance Management and Support Model

a) Centralized Budget – Effective SOA Management would require an investment in
staff, hardware, software and tools. Therefore, an appropriate budget or fee based
structure would need to be granted to support Governance, and maintenance of an
Enterprise Repository. Initially, some outside staff consultants would likely be
required to manage certification and performance labs, as well as serve as
enterprise technical troubleshooters.

b) Service Contract Policies - Service performance contracts would be published by

a producing department for a given web service. Consuming organizations would
build their applications around these contracts. The contract process itself would
be established by the Governance portion of the SOA. Actual service performance
would be monitored by the individual data centers. For enterprise applications,
performance may be hosted and monitored by VITA’s ICC infrastructure. In that
scenario, VITA’s ICC and the publisher would collaborate with the producing
development organization to fix any problems. Consuming organizations would
have a key part in revising performance contracts.

c) Service Certification - Certifying web services would be a key function. All

“public use” and “reusable” revised services would go through the ICC
certification process to ensure that they would play nicely in the enterprise
architecture. The testing would be done in the ICC Lab maintained by VITA.

d) SOA Policies and SOA Security - Based on SOA Leadership input, the SOA

VITA Integration Competency Center would establish and enforce SOA Policies
and SOA Security Policies.

e) Application Services Granularity – This is a key component in determining how

manageable the SOA environment would be, as well as the degree of service
reuse. If the service interfaces are too complex or if there are simply too many
services, then manageability would become a real problem. Services would need

Page 73 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

to be easily composed into higher level services to achieve maximum reuse. So,
careful thought and ongoing diligence would be required.

3) Centralized Enterprise Repository

Reference models, portfolio and application information would be managed in a
centrally maintained Integration Competency Center. This includes ensuring that the
repository is always available and it is regularly backed up. A guide on how to search
and use the repository would also be published. The repository would have a
hierarchical structure for the BRM and SRM (see glossary of terms). That is, service
components would be related to their business services. The owner, description,
version and interface definition of each service would be clearly stated as well as any
dependencies. Extensive search capabilities would be provided to ensure easy access
by developers as well as business architects.

4) Centralized Integration Competency Center

The ICC and the enterprise architecture group typically establish the SOA vision and
the SOA reference architecture. The ICC is built and empowered within an
organization as the approach to structured application integration matures. 10

a) Research a process for creating a state-wide repository of public and reusable

services would be maintained by the VITA SOA Integration Competency Center
for the purpose of locating web services. (may ultimately migrate toward UDDI)

b) Manage Service Reference Model – The service reference model would have an

appropriate hierarchical structure that maps to the business reference model and
application and project portfolios. Additionally, service granularity would be
properly managed. Provide high quality search and cross reference services.

c) Master Developer’s Guide - A master developer’s guide would be created that

states the general guidelines for developing services.

d) Certification Lab – Development organizations would package their unit tested
services and submit them to the ICC for certification. A certification lab would be
set up and published to all development organizations so they know how their
services would be tested. It would take significant collaboration to initially set up
this lab as well as ongoing fine-tuning. The goal should be to ensure that services
play nicely together in a distributed environment, meet their stated requirements,
have stable and well defined interfaces, and meet all stated security requirements.

e) Performance Lab – In cases where a service has a stated performance contract,

then they need to be tested in the performance lab. For composite services, which
depend on one or more base services, the lab would be able to install the

10 The ICC and SOA Governance: Managing a Successful Integration Project. Paolo Malinverno, Gartner
Research

Page 74 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

composite service and test it on the live network consuming the base services in
the data centers.

f) Developer Discussion Group – Integration Competency Center would facilitate a

discussion group for service developers.

g) Operations Discussion Group – Integration Competency Center would facilitate a
discussion group for service operators. This would likely take the form of an SOA
Center of Excellence.

h) Developer Workshops – Integration Competency Center would design appropriate

workshops for developers. At minimum, there should be a workshop for
developing a base service, and one for developing a composite service.
Workshops would implement best practices as defined by SOA Leadership and
Governance.

i) Compliance Reporting – Some shared services would have contracts specifying

availability, scalability, and recoverability metrics. Integration Competency
Center would be responsible for reporting out of compliance services.

j) Installation and Administration – SOA data centers would be responsible for

installing, configuring, deploying, and registering their services. They would also
ensure that proper logging is turned on and review the operational logs on a
regular basis. Appropriate data and files would be backed up on a regular
schedule that fits the particular service. Additionally, the services would be
installed and configured to meet performance, availability, and scalability
requirements. A recommended best practice is to consolidate data centers.

k) Service Inventory – VITA’s ICC would be responsible for updating the Enterprise

Repository with information about all services. At minimum, this would include
the service owner, version number, and who is using the service. This last data
element might be dynamically updated by service monitoring tools.

l) Incident Management – Ultimately, for centralized services and when the new

enterprise help desk is deployed, when a service problem arises, the VITA
Integration Competency Center would be expected to resolve the problem in an
efficient manner by coordinating the response with the agency that created the
web service. There would be a single owner for each ticket placed to VITA’s
Customer Care Center which should increase customer satisfaction. This probably
falls under the ITSM (Information Technology Service Management) umbrella.

m) Configuration Management – When enhancement or bug fixes are applied by a

development organization, the resulting service would be versioned and
resubmitted to the certification group. Upon successfully certification, the newly
version component would be put into production via Enterprise Operation’s
configuration management policy (again, probably ITSM based).

Page 75 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

n) Release Management – When we receive a request from an owner, initial
services, as well as major changes to existing services, would be provided in a
release package and submitted for certification. Upon approval, the release
package would be deployed into production by Integration Competency Center
following proper release policies.

o) SOA Security Management – Some services would not have inherit security

requirements while others may have very stringent requirements. Services that
participate in Identity, Access, and Privacy implementations would follow
specific enterprise security policies. This is especially true for those services that
are part of a “circle of trust”. While the Governance group would determine the
policies, they would be enforced by Integration Competency Center.

p) Service Contracts – The Integration Competency Center would be responsible for

ensuring availability, scalability, and recoverability requirements are met as
defined in a services contract. They would evaluate data gathered by monitoring
tools to determine whether they are in or out of compliance. They would provide
compliance reports to as well as be responsible for getting a service back into
compliance. They would use an escalation process if they need additional help.

q) Operational Guides – ICC Enterprise Architects would provide operational

guides detailing startup, shutdown, and service recovery procedures. They would
contain configuration and deployment packaging information. A section on
common error messages and typical troubleshooting procedures would also be
helpful.

r) Gather Operational Data – A common set of tools would be specified by

Enterprise Architecture Governance and Integration Competency Center. It is
expected that the Integration Competency Center would be proactive in evaluating
the data generated by the tools and take appropriate action when potential
problems are indicated.11

11 Service-oriented Architecture (Draft). California Enterprise Architecture Program, December 8, 2005

Page 76 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Appendix B: Software Testing Types and Techniques

There are two types of software testing:

1. Dynamic Testing: testing the software program when it is actually running.
Examples: Functional Testing, Load Testing, and Regression Testing.
Dynamic Testing for a Software Project can be performed in five SLDC phases:

SDLC Phase Dynamic Testing Type

Development Bug Verification Testing
Build Acceptance Testing
Compliance/Conformance Testing
Conversion Testing
Interface Testing
Unit Testing

System Integration Test Bug Verification Testing
Claim Testing
Compliance/Conformance Testing End-
to-End Testing
Functional Testing
Installability Testing
Installation Testing
Integration Testing
Interface Testing
Load Testing
Negative Testing
Operations Acceptance Testing
Performance Testing
Platform Configuration Testing
Recovery Testing
(Automated) Regression Testing
Reliability Testing
Risk-based Testing
Security Testing
Stress Testing
System Testing
Technical Testing

User Acceptance Testing Bug Verification Testing
Claim Testing
End-to-End Testing
Regression Testing
Risk-based Testing
Specification-based Testing
User Acceptance Testing

Implementation Parallel Testing
Pilot Testing

Page 77 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

2. Static Testing: testing performed while program is not running. Examples:
Requirement Validation, Code Inspections, Design Review, General Reviews, and
Audits. (Note: Static Testing may be implemented using computer-automated tools.)

Static Software Project Testing can be performed in all SDLC phases.

SDLC Phase

Static Testing Type

Performed by
Planning
User Requirements Requirement Validation Business User

Development
Testing

Design
Development Code Inspections
System Integration Test
User Acceptance Testing
Implementation

Dynamic Software Testing Types

Dynamic Testing can be performed using two different methods: black-box and white-
box.

Black-box test design treats the system as a "black-box", so it doesn't explicitly use
knowledge of the internal structure. Black-box test design is usually described as
focusing on testing functional requirements. Synonyms for black-box include: behavioral,
functional, opaque-box, and closed-box.

White-box test design allows one to peek inside the "box", and it focuses specifically on
using internal knowledge of the software to guide the selection of test data. The task is to
test the code or its logic with little or no regard to the specifications. All internal
components need to be adequately exercised. The ultimate goal is to test every execution
path through the program logic. Synonyms for white-box include: structural, glass-box
and clear-box.

The following Dynamic Testing types appear in alphabetic order.

Page 78 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Bug Verification Testing

Bug fix verification is one of the most important and common types of regression testing
that is performed. Many fixes fail, for a variety of reasons. Perhaps the developer didn't
understand your bug report and fixed something else instead: perhaps the developer didn't
test his fix before he checked in the code; or perhaps the fix did not make it into the build.
It's also common to find new bugs while verifying bug fixes. Sometimes the fix breaks
nearby functionality, or sometimes the new bug was not observable until the previous
error was corrected. Sometimes bugs are fixed in such a way that you would still consider
the behavior a problem (although usually not as serious a problem as the original bug

Build Acceptance Testing
A build acceptance test (sometimes also called build verification test, smoke test, quick
check, or the like) is a set of tests run on each new build of a product to verify that the
build is testable before the build is released into the hands of the test team. The build
acceptance test is generally a short set of tests, which exercises the mainstream
functionality of the application. Any build that fails the build acceptance test is rejected.

Claim Testing
Packaging, help files, and user's guide along with the software itself, are going to make
some claims about what the software offers its users. Some of these claims are explicit: it
will run on this platform; it will run with this much RAM; it will run on these operating
systems; it will perform these tasks; it will work. Others are implicit: if there is a print
function, it will print; if there is a save function, it will save; etc… The claim testing
technique will identify these claims, both implicit and explicit, and validate that they are
in fact accurate.

Compliance/Conformance Testing
Testing to verify that the software meets standards. For example: testing to meet browser
standards could include testing the web pages for compliance to
HTML/CSS/XML/XHTML layout and rendering, DOM, parsers, and JavaScript
standards.

Conversion Testing
Testing to ensure that all data elements and historical data is converted from an old
system format to the new system format. Most conversions of data from old applications
to new ones require an automated conversion. With an automated conversion, the
software that has been written to convert the data must also be tested.

End-to-End Testing
End-to-End Testing involves a coordinated effort between IT and the Users to ensure that
data put into one application will move correctly to other applications. Similar to
Functional Testing, firms define a suite of test scenarios, develop test cases that will
validate the scenarios, and create test data to validate that the application works properly.

Page 79 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Functional Testing
The goal of Functional Testing is to ensure that the applications can perform correctly
under all of the conditions that the application could encounter when in live processing.
Define a suite of test scenarios, develop test cases that will validate the scenarios, and
create test data to support the test cases. Testing using this approach means testing the
functionality of the application.
Functionality Testing might be:

• Installability Testing
• Reliability Testing
• Sequence (Scenario) Testing
• Specification-based Testing

Functionality Testing is:
• Impacted by Testability: In order to test the functionality of a product, it must be

testable – it must be code complete, it must install, and all branches must be available.
Any area that isn’t complete or cannot be examined, obviously cannot be tested for
functionality.

• Concerned with Features: Functionality is concerned with what works and how it
works – not necessarily why it works. This includes menu items and UI options.

Functional testing should cover the following aspects of the module’s functionality:
• Exercise all interfaces between units within a module whether new or modified.
• Exercise each new or modified function or user input command and each command

option.
• Interface as expected with each database, database table, utility, external software

package or external file, mainframe, server, hardware device or other entities external
to the module.

• Verify the correct generation of all error or warning or other user or log messages.

Installability Testing
Can a product be installed on a clean system, can it be installed over a previous version of
itself, and can it be completely removed from a system?

Installation Testing
The package will be deployed in an environment similar to the customer environment.
This will allow the company to detect any unexpected behavior of the system or
application being developed. The simulation of the exact working environment of the
customer is essential in order to know what bugs exist before actually sending the
application to the customer and start receiving bug reports from him.

Integration Testing
The process of progressively aggregating individual system components to demonstrate
proper interworking. Integration testing is aimed at exposing problems that arise when
two or more components are combined. Typical problems identified in integration testing
are improper call or return sequences, inconsistent data validation criteria and
inconsistent handling of data objects. Three approaches are usually taken toward
implementing Integration Testing:

Page 80 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

1. Bottom-up: In order to test using the bottom-up approach, each component is tested

individually - to do so, test drivers should be provided to simulate other components
as if they exist. If the test goes fine, then the other components are linked to the ready
components when they are fully implemented, everything is then tested as a whole,
i.e. as one complete unit. Using this approach will require the implementation of test
drivers to simulate the calls from other components. Using this approach makes it
hard for detecting the interface problems between components until all the
components are linked and tested.

2. Top-Down: A top-down test is almost the opposite of the bottom-up approach. A
main skeleton is provided, which is kind of a main program, this skeleton represents
the normal major flow of the execution of the program, through which the
components are called. Since components are not yet ready, they are replaced with
small stubs, these stubs tell the main program that these components exist, i.e. they
simulate the existence of these components, but they do not perform the complete
functionality required from the real component. These stubs are replaced by their
corresponding components when they are implemented.

3. Big Bang: Simply, test each module (component) individually, then link all
components together and test the project as one whole application. This method
although being an easy approach is not considered good. Bugs found when all
modules are linked can’t be fixed easily; in fact they can’t be even detected easily.

Interface Testing
It is initially important to ensure that each program passes data correctly to other
programs in the system, particularly if programs have been developed off-site. The
checking of this data passing is sometimes referred to as "Interface Testing".

Load Testing
Subjecting a system to a statistically representative (usually) load. In load testing, load is
varied from a minimum (zero) to the maximum level the system can sustain without
running out of resources or having, transactions suffer (application-specific) excessive
delay. (see Performance and Stress Testing)

Negative Testing
The tester determines how many ways he/she can cause the software product to get
wrong answers or abort execution. Test cases would attempt to execute the software:
• with missing data files, missing data records in databases, or scrambled data.
• with misspelled links, or undefined, wrong, or missing configuration parameters.
• on platforms it was not intended to execute on.
• with missing communication lines, or bad incoming or outgoing data.
• powered-off peripherals, like printers, scanners, external CD or CD-RW drives,

external hard drives, etc.

Operations Acceptance Testing
This phase of testing allows IT Operations staff to ensure that the developed system is
capable of running in 'live' conditions. (Also called Job Stream Testing)

Page 81 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Parallel Testing
Parallel Testing is managed by the Users and is usually the last test before a system goes
live. If the new system is replacing an existing one, both systems are operated side by
side for a pre-determined period of time to ensure that the output from both systems is the
same, or that any differences are expected.

Performance Testing
Involves inputting a large number of transactions into a computer application to see if all
of the components (application, hardware, telecommunications, people, etc.) can
accommodate the peak volume within acceptable time frame. (see Load and Stress
Testing)

Pilot Testing
One or more sites are selected to perform a final component of User Acceptance Testing.
Usually the Pilot sites reflect a representative set of user types, sophistication levels,
software and hardware platforms. Pilot testing may also be considered part of the
Implementation phase.

Platform Configuration Testing
Testing the software on representative customer software and hardware platforms. It is
not possible to test software on all combinations of drivers, operating systems, software
configurations on personal computers. The tester should apply test cases to the most
prevalent user base combinations.

Recovery Testing
Tests performed to see if Application restart, back-up, and restore facilities operate as
designed.

Regression Testing
The product has changed in one area and you want to be sure that it still passes all the
tests it did before the change. Testing to make sure the software hasn't taken a step
backwards, or "regressed", is called "regression testing". If you run the different tests
after each change, you have no way of knowing for sure that no new defects were
introduced. Consequently, regression testing must run the same tests each time.
Sometimes new tests are added as the product matures, but the old tests are kept too.
• From the start of the software project, every new capability is accompanied by a short

test battery
• Correct results are garnered for all the tests, and stored as files (text, data, screen

images, etc.).
• Anytime a new capability is added, with its new test battery, all previous, validated

tests are run, and the results compared with the standard results already stored on file.
• The same full regression test is run whenever the implementation is changed, even if

no new capability is introduced.

Reliability Testing

Page 82 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

This kind of testing is based on how well a product handles failures, data integrity, and
safety and security.

Risk-based Testing
There are some places where defects are less tolerable-places where data, software,
hardware, etc could be damaged or lost. These areas can be considered high-risk, and
they are the areas the risk-based technique seeks to validate. This technique focuses time
and energy in the areas that, if they contain failures could cost the organization money,
cause embarrassment or compromise the quality of services offered.

Risk can be defined as a combination of the likelihood of a problem occurring, and the
impact it would have on a user. Risk-based Testing analysis focuses on three things:
1. What areas the user is most likely to experience a problem?
2. What the impact of a certain type of problem would be?
3. What is the testing priority of each potential problem?

Security Testing
Testing done to ensure that the application systems control and auditability features of the
application are functional. Includes: Penetration Testing, Denial of Service Testing,
Covert Testing, and Vulnerability Assessment.

Specification-based Testing
A specification is anything that comes with the product – the box, the instructions, and
any readme or help file. The functionality of a product can be tested against these
specifications.

Stress Testing
Subjecting a system to an unreasonable load while denying it the resources (e.g., RAM,
disc, mips, interrupts, etc.) needed to process that load. The idea is to stress a system to
the breaking point in order to find bugs that will make that break potentially harmful. The
system is not expected to process the overload without adequate resources, but to behave
(e.g., fail) in a decent manner (e.g., not corrupting or losing data). Bugs and failure modes
discovered under stress testing may or may not be repaired depending on the application,
the failure mode, consequences, etc. The load (incoming transaction stream) in stress
testing is often deliberately distorted so as to force the system into resource depletion.
(see Load and Performance Testing)

System Testing
System Testing mainly differs from Unit Testing in that the software is viewed as a
coherent whole for the first time, rather than as a series of individual programs. The goal
is to ensure that all of the code works as defined by the requirements and design
documents before it is delivered to the Users. In simple words, system test is a three-step
test:

• Know and understand what the system does as a whole, i.e. as an application
• Know and understand what are the needs of the customer/user
• Check if the results of point 1 and 2 matches.

Page 83 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Technical Testing
The goal of Technical Testing is to ensure that files are correctly established, that reports
work properly with page breaks as well as other formatting issues. The conditions defined
by Technical Testing are generally consistent across all applications and are not unique to
the specific application.

Unit Testing
Unit Testing is the first step in the testing process and is carried out by developers on
individual programs, or parts of a program. The developer generally creates their own test
cases, inputs the data to the program and verifies the results.

The developers usually concentrate their efforts on proving that their programs perform
correctly at a technical level. Each program has its own technical specification, and the
developer constructs a Unit Test script which will ensure that the program can deal with
each requirement as specified.

The tester should read and use the source code of the applications being tested, through
which, applying test cases and various inputs in order to test branches, conditions, loops
and the logical sequence of statements being executed.

The tester should make sure that each unit produces the appropriate output for the input
given it, including sensible error trapping.

Unit Testing may also include memory leakage testing (for specific languages) and run-
time error checking.

User Acceptance Testing (UAT)
User Acceptance Testing is a very critical stage of the testing process since it is managed
by the Users to determine if the application meets the terms of the requirements
document.

This test consists of a series of predetermined test cases, with defined expected results,
that will validate the functionality of the system and ensure that the Users can work with
the system as it has been designed.

This testing phase differs from System Testing in the following ways:
• It exists to give confidence to business staff that the system is ready to be put 'live'
• It is planned and carried out by business staff, usually with support from IT staff
• It focuses purely on proving that Business Requirements have been met

Volume Testing
See Load, Performance, and Stress Testing.

Page 84 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Dynamic Testing Techniques

Boundary Value Analysis
A test design technique that complements equivalence partitioning. Rather than selecting
any element of an equivalence class, boundary value analysis selects elements at the
“edges” of the class. It has been found empirically that bugs tend to cluster at the
boundaries of the input domain rather than in the center.

An example would be in income limit for receiving a benefit is $1,000, then boundary
value analysis testing would include test cases at $999, $1000, and $1001.

Boundary Value Analysis can be extended into including the affects of “rounding” of
data on the program. Additional test cases of $999.49, $999.50 might be useful if the
system “round” to the nearest dollar. The impact of “truncation” can be tested with test
cases of $1000.00 and $1000.01.

Domain Testing
The idea that all possible values can be tested in all possible combinations for each of the
input fields is not realistic-especially in a test cycle as short as the one we're working
with for this project. Domain testing is the division of possible input ranges into a series
of domains (i.e. 1-100, 101-1000, 1001-10,000, etc…for number input fields), and then
testing these domains using a subset of data values.

An example would be: use 1, 25, 50, 75, and 100 for the 1-100 domain, and assume that
the remaining 95 values will produce similar results.

Equivalence Partitioning
A test design technique for reducing the total number of tests required to validate a
program’s functionality. The basic idea is to divide the input domain of a program into
classes of data. By designing tests for each class of data rather for each member of a
class, the total number of tested needed is reduced.

As an example, zip code entry can be portioned into classes of valid and invalid inputs as
follows:
• Valid inputs are all sets of five numeric characters that constitute an operational zip

code.
• Invalid inputs include:

o Sets of numeric characters with less than 5 characters
o Sets of numeric characters with more than 5 characters
o Sets of five numeric characters that do not constitute an operational zip code
o Sets containing non-numeric characters

Setups and Cleanups (Testing from a known state)

Page 85 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

One of the basic principles of testing is that the system under test should always be in a
known state. If a bug is found but the tester does not know all the steps that led up top the
failure, it may not be possible to reproduce the bug. Ideally, automated tools would be
used to inventory the state of the system under test, log discrepancies, and allow the tester
to change the system to a desired state.

There are two approaches to dealing with test initialization. One is to use setup routines
to bring the system to a known state at the start of test, and use cleanup routines that
“undo” the changes made during testing. Another approach is to do setups only, and
forget cleanups. If for each test there is always a setup operation, thin it does not matter
what happens at the end of a test. Generally it is a “best practice” to perform cleanups
whenever a test is run that puts the systems into an undesirable state. For example, if a
tests corrupts a database, puts the system into an error condition, fills a file to capacity,
etc.

Sequence (Scenario) Testing
Testing an application through a series of little steps-steps that individually may not
uncover any bugs-but steps that combined may generate any number of problems, and
even failures. It is important to remember that testing a piece of software is much deeper
than simply selecting menu options. One function-key may successfully take me ahead in
the application, and another function-key may return me to my starting point. Doing this
again is the step that might lead to a bug.

Static Testing Techniques

Audits
An independent examination of a work product or set of work products to assess
compliance with specifications, standards, contractual agreements or other criteria.

Checklists
Connect to Review or technique section for Static Testing

Code Coverage Analysis
Code Coverage Analysis is the process of:
• finding areas of a program not exercised by a set of test cases,
• creating additional test cases to increase coverage, and
• determining a quantitative measure of code coverage, which is an indirect measure of

quality.
An optional aspect of Code Coverage Analysis is:
• identifying redundant test cases that do not increase coverage.
A code “coverage analyzer” automates this process.

Coverage analysis is used to assure quality of test suites, not the quality of the actual
product. The coverage analyzer is not generally used when running the test suite.

Page 86 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Coverage analysis requires access to test program source code and often requires
recompiling it with a special command. Most beneficial for “rules-based” programs.

Code Inspections
Inspection’s “goal” is to improve the quality of the program by reviewing programmers’
work.

Manual or automated:
• Programming Standards Verification. Assesses whether the source code conforms

to a set of user-configurable programming standards.
• Structured Programming Verification. Assesses whether the source code is

properly structured.
Automated:
• Full Variable Cross Reference. Examines global and local variable usage within and

across procedures.
• Unreachable Code Reporting. Searches for areas of redundant code.
• Static Data Flow Analysis. Follows variables through the source code and reports

any anomalies in their use.
• Information Flow Analysis. Analyzes inter-dependencies of variables for all paths

through the code.
• Loop Analysis. Reports the looping structure and depth of nesting within the code.
• Procedure Interface Analysis. The interface for each procedure is analyzed for

defects and deficiencies.

Cyclomatic Complexity Analysis
A metric that measures logical complexity of a module. The value indicates the minimum
number of independent paths (DD-path: decision-to-decision paths) that would need to be
tested to ensure complete coverage of the program. If full coverage is required, there
would be one test case for each path. (other examples: McCabe's metric and control flow
knots)

Reading
A technique that is used individually in order to analyze a product or a set of products.
Some concrete instructions are given to the reader on how to read or what to look for in a
document. Reading is embedded in methods like inspections, audits or reviews. Therefore
it is used as a technique for verification in the software development process.

Requirements Validation
Requirements are validated using the Requirement Traceability Matrix and interviews.

Reviews
A process or meeting during which a work product, or a set of work products is presented
to project personnel, managers, users, customers, or other interested parties for comment
or approval. Types include code reviews, design reviews, formal qualification reviews,
requirements reviews, and test readiness reviews.

Page 87 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Version Comparators
Determines where changes have been made to source code or to data files between one
version and the next of the program.

Walkthroughs
A static analysis technique in which a designer or programmer leads members of the
development team and other interested parties through a segment of documentation or
code and the participants ask questions and make comments about possible errors,
violation of development standards, and other problems.

The following table clarifies the differences between these terms:

Type Scope Purpose Method
Reviews Usually broad Project progress, assessment

of milestones
Ad hoc

Walkthroughs Fairly narrow Assess specific development
products

Static analysis of
products

Inspections Narrow Assess specific development
products

Non-interactive
fairly procedural

Audits Range from
narrow to
broad

Check process and products
of development

Formal, mechanical
and procedural

Reading Narrow Analysis of products, prepare
for reviews, inspections...

Not a method, a
technique

Page 88 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Appendix C: Features and Benefits of the Virginia.gov
Payment Portal

Virginia.gov receives calls weekly from government entities interested in using the
Virginia.gov Payment Portal. Due to the scalability of Virginia.gov’s solution, all
Virginia government entities could have an online payment process that addresses their
individual needs implemented quickly and easily.

Interoperability
Virginia.gov’s Payment Portal consists of various modules. These modules are used by
over 30 applications and services with diverse platforms and interfaces, including .NET,
ASP, Perl, Oracle, XML, etc. The Virginia.gov Payment Portal has been incorporated
into many of Virginia.gov’s custom built online services. Additionally, it has been
integrated with numerous stand alone agency or vendor developed services.

Technical Environment Overview
Virginia.gov’s Payment Portal is hosted on a SUN Solaris server. All data is backed up
daily, with monthly archival tapes kept at an offsite location. A backup server in a
remote data center is updated daily, and can be brought online within minutes should the
primary data center go down.

Security
Virginia.gov’s Payment Portal modules and applications use 128 bit Secure Sockets
Layer (SSL) certificate provided by Thawte, renewed annually. When necessary,
Virginia.gov restricts IP access from an entity’s application to its payment modules.
Virginia.gov’s communications with VeriSign for credit card payments also utilize SSL.
VeriSign’s servers, using a multi-threaded processing environment, receives the
information from Virginia.gov and then transmits it over a secure private network to the
appropriate financial processing network for real-time payment authorization. For ACH
payments, Virginia.gov’s communications with Wachovia use PGP (Pretty Good
Privacy) FTP (File Transfer Protocol) for the exchange of transaction data via the
scheduled batches.

Privacy
Government entities strive to meet strict privacy guidelines. To address privacy needs,
Virginia.gov ensures that no full credit card numbers are stored within our systems.
Virginia.gov’s full Privacy Policy can be viewed at:
http://www.vipnet.org/cmsportal/vipnet_987/policy_1112/index.html#privacy.

Availability
The server that hosts Virginia.gov’s Payment Portal has been available 99.87% over the
past year. NOVA’s Via Klix gateway was available approximately 97.00% in 2004.
VeriSign’s gateway was available for 99.99% in 2004. The availability of the Payment
Portal is impacted by these electronic processors’ reliability.

Page 89 of 94

http://www.vipnet.org/cmsportal/vipnet_987/policy_1112/index.html%23privacy

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

The Virginia.gov Payment Portal offers Virginia government partners numerous other
features and benefits as part of the Enterprise Solutions:

Customization

• Able to be integrated with diverse platforms and systems within days, including
through an XML web service approach.

• Multiple payment options – credit card (auto settle or delayed capture) and/or
ACH.

• Solutions to address special credit card settlement and ACH batch time needs.
• Pre-notification ACH process can be set-up to validate customer bank accounts.

Account Set-up and Testing

• Coordination of the set-up and testing of credit card merchant and VeriSign
accounts.

• Significant discounts of VeriSign monthly fees and set-up fees due to the
Virginia.gov’s partnership with VeriSign.

• Integration with Virginia.gov’s billing and credit card logging systems.

Reporting – Credit Card Payments

• Transaction level confirmations via an email or a batched daily file.
• Access to a password protected Virginia.gov credit card transaction log tool.

Reporting – ACH Payments

• Email confirmation of data transmissions.
• View ACH account activity, including actual settlement information, through a

web-based administrative interface provided by Wachovia.

Monitoring

• Enforce (AVS) address collection to ensure lowest discount rate on credit card
transactions.

• Internal monitoring for duplicate transactions and unavailability of credit card
gateways.

• 24/7 monitoring of Virginia.gov servers and applications.

Customer Support

• Education and guidance about online payments.
• Research regarding transactions.
• Reconciliation invoicing provided to Payment Portal customers.
• Set-up of any necessary refunds or credits.
• Virginia.gov’s partnership with VeriSign includes Premium Support.

Page 90 of 94

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Appendix D: References and Links

References:

State and Federal Sites:

The application domain team would like to publicly thank their counterparts in the
many states and federal government agencies whose excellent work preceded this.
We could not have completed this report as quickly as it was done without the tireless
energies obviously expended to complete their Enterprise Architecture documents.
We also hope that other states will find this document useful in the design and
updating of their own Enterprise Architecture. Significant contributions, references,
and insights were derived from the following documents and web sites.

E-Gov: Federal Enterprise Architecture (FEA)
http://www.whitehouse.gov/omb/egov/a-1-fea.html

FEA Consolidated Reference Model Document: May 2005
http://www.whitehouse.gov/omb/egov/documents/CRM.PDF

Department of Interior
Interior Enterprise Architecture: Conceptual Architecture Principles: January 4,
2002
http://www.doi.gov/ocio/architecture/conceptual/Conceptual_Architecture_Final.pdf

Housing and Urban Development:
Enterprise Architecture Practice
http://www.hud.gov/offices/cio/ea/newea/index.cfm

Enterprise Architecture Practice: Future State Technical Architecture Guidelines for
the Application Development Practice: March 26, 2003
http://www.hud.gov/offices/cio/ea/newea/resources/devguide.doc

Enterprise Architecture Principles: 8/03/2005
http://www.hud.gov/offices/cio/ea/newea/resources/eaprin.pdf

Department of Education:
IT Architecture Principles Guidance: March 1999
https://www.ed.gov/offices/OCIO/archived_information/downloads/prin.doc

California:
Service-Oriented Architecture: Draft: December 8, 2005 (updated: April 21, 2006)

Page 91 of 94

http://www.whitehouse.gov/omb/egov/a-1-fea.html
http://www.whitehouse.gov/omb/egov/documents/CRM.PDF
http://www.doi.gov/ocio/architecture/conceptual/Conceptual_Architecture_Final.pdf
http://www.hud.gov/offices/cio/ea/newea/index.cfm
http://www.hud.gov/offices/cio/ea/newea/resources/devguide.doc
http://www.hud.gov/offices/cio/ea/newea/resources/eaprin.pdf
http://www.ed.gov/offices/OCIO/archived_information/downloads/prin.doc
http://www.ed.gov/offices/OCIO/archived_information/downloads/prin.doc

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

http://www.cio.ca.gov/ITCouncil/Committees/PDFs/SOA_Details_2006-04-21.pdf

Connecticut:
Application Development Domain Technical Architecture:05/08/2003
http://www.ct.gov/doit/lib/doit/Application_Architecture_5-8-2003_ver_2-5.pdf

Collaboration & Directory Services Domain Technical Architecture: 1/04/2001
http://www.ct.gov/doit/lib/doit/downloads/dirserv.pdf

Application Development Domain: Addendum A: Java Code Conventions
http://www.ct.gov/doit/lib/doit/downloads/Addendum_A.pdf

Application Development Domain: Appendix B: Java Coding Standards and
Conventions: 2/06/2003
http://www.ct.gov/doit/lib/doit/downloads/Appendix_B.pdf

Application Development Domain: Appendix C: Microsoft .NET Migration
Guidelines
http://www.ct.gov/doit/lib/doit/Appendix_C_Microsoft_dot_net_migration_strategy.p
df

Massachusetts:
Enterprise Technical Reference Model - Version 3.5
http://www.mass.gov/?pageID=itdsubtopic&L=5&L0=Home&L1=Policies%2c+Stan
dards+%26+Legal&L2=Documents+by+Type&L3=Enterprise+Technical+Reference
+Models&L4=Enterprise+Technical+Reference+Model+-+Version+3.5&sid=Aitd

ETRM Version 3.5 Application Domain:
http://www.mass.gov/Aitd/docs/policies_standards/etrm3dot5/etrmv3dot5application
domain.pdf

North Carolina:
Statewide Technical Architecture: Implementation Guidelines: Application
Architecture
http://www.ncsta.gov/docs/Implementation%20Guidelines/domain/Application%20D
omain%20Implementation%20Guidelines.pdf

Statewide Technical Architecture: Application Domain
http://www.ncsta.gov/docs/Principles%20Practices%20Standards/Application.pdf

Statewide Technical Architecture: Collaboration Domain
http://www.ncsta.gov/docs/Principles%20Practices%20Standards/Collaboration.pdf

Page 92 of 94

http://www.cio.ca.gov/ITCouncil/Committees/PDFs/SOA_Details_2006-04-21.pdf
http://www.ct.gov/doit/lib/doit/Application_Architecture_5-8-2003_ver_2-5.pdf
http://www.ct.gov/doit/lib/doit/downloads/dirserv.pdf
http://www.ct.gov/doit/lib/doit/downloads/Addendum_A.pdf
http://www.ct.gov/doit/lib/doit/downloads/Appendix_B.pdf
http://www.ct.gov/doit/lib/doit/Appendix_C_Microsoft_dot_net_migration_strategy.p
http://www.mass.gov/?pageID=itdsubtopic&L=5&L0=Home&L1=Policies%2c%2BStan
http://www.mass.gov/Aitd/docs/policies_standards/etrm3dot5/etrmv3dot5application
http://www.ncsta.gov/docs/Implementation%20Guidelines/domain/Application%20D
http://www.ncsta.gov/docs/Principles%20Practices%20Standards/Application.pdf
http://www.ncsta.gov/docs/Principles%20Practices%20Standards/Collaboration.pdf

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Implementation Guideline: Applications Development Guidelines for JAVA 2
Platform, Enterprise Edition
http://www.ncsta.gov/docs/Implementation%20Guidelines/technology/J2EE%20Impl
ementation%20Guidelines.pdf

Implementation Guideline: Enterprise Application Development Guidelines for
Microsoft .Net Framework
http://www.ncsta.gov/docs/Implementation%20Guidelines/technology/Microsoft.Net
%20Enterprise%20Development%20Guidelines.pdf

Pennsylvania:

Database Management Systems: Production and Operational Standards: February
23, 2005
http://www.oit.state.pa.us/oaoit/lib/oaoit/STD_INF001B.doc

Other Information References:

Gartner Group:
http://www.gartner.com/
The ICC and SOA Governance: Managing a Successful Integration Project. Paolo
Malinverno

SOA Governance: Frameworks, Registries and Policy Enforcement. L. Frank Kenney
and Daryl Plummer

SOA Governance: Frameworks, Registries and Policy Enforcement. Gartner. L.
Frank Kenney and Daryl Plummer. 5-7 December 2005, JW Marriott Grande Lakes
Orlando, Florida

Enterprise Architecture Executive Council (EAEC):
http://www.eaec.executiveboard.com

EA Framework and Governance Deliverables: The IBM Approach

John Hancock: Embedding Enterprise Architecture Across the Systems Life Cycle

Motorola: Development Asset Reusability

Business Process Reuse via Service-Oriented Architecture

Microsoft: Application Portfolio Management

Page 93 of 94

http://www.ncsta.gov/docs/Implementation%20Guidelines/technology/J2EE%20Impl
http://www.ncsta.gov/docs/Implementation%20Guidelines/technology/Microsoft.Net
http://www.oit.state.pa.us/oaoit/lib/oaoit/STD_INF001B.doc
http://www.gartner.com/
http://www.eaec.executiveboard.com/

Application Domain Report Version 1.1 07-01-2016 1.0 07-10-2006

Pfizer: Alternative Architectural Approaches for Information Integration Service-
Oriented Architecture

Other Articles:
Selecting a Development Approach: February 17, 2005
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopm
entApproach.pdf

System Development Methodologies for Web Enabled E-Business: A Customization
Paradigm; Linda Night, Theresa Steinbach, and Vince Kellen; November 2001;
http://www.kellen.net/SysDev.htm

N-Tier Application Development with Microsoft.NET by Karim
http://www.microsoft.com/belux/msdn/nl/community/columns/hyatt/ntier1.mspx

SOA Governance, WebLayers, Inc.
http://www.weblayers.com/gcn/whitepapers/Introduction_to_SOA_Governance.pdf

Other Website References:

The Open Group:
http://www.opengroup.org/architecture/togaf8-doc/arch/toc.htm

The Center for Open Source & Government
http://www.egovos.org/

The National Center for Open Source Policy and Research
http://www.ncospr.org/

Open Source Initiative (OSI)
http://opensource.org/

Microsoft:
http://www.microsoft.com/resources/sam/Implementing_Policy.mspx

IBM:
http://www.ibm.com/us/

Page 94 of 94

http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopm
http://www.kellen.net/SysDev.htm
http://www.microsoft.com/belux/msdn/nl/community/columns/hyatt/ntier1.mspx
http://www.weblayers.com/gcn/whitepapers/Introduction_to_SOA_Governance.pdf
http://www.opengroup.org/architecture/togaf8-doc/arch/toc.htm
http://www.egovos.org/
http://www.ncospr.org/
http://opensource.org/
http://www.microsoft.com/resources/sam/Implementing_Policy.mspx
http://www.ibm.com/us/

	Application Domain Team Members
	Review Process
	Technology Strategy and Solutions Directorate Review
	Online Review

	Table of Contents
	Executive Summary of Application Domain
	Overview
	Commonwealth of Virginia: To-Be ETA
	Transition:
	Rationale:

	Definition of Key Terms
	Strategic:
	Emerging:
	Transitional/Contained:
	Obsolescent/Rejected:

	Agency Exception Requests

	Application Scope
	Overall Application Domain Scope
	Enterprise System Design Topic Components:
	Application Acquisition Topic Components: [1] Development and Support Platforms Topic Components:
	Software Engineering Topic Components:
	Geospatial Technologies Topic Components:
	Enterprise Applications Topic Components:

	Scope of this Report
	As-Is Application Architecture
	To-Be Application Architecture
	Future Application Domain Initiatives

	Domain-wide Principles, Recommended Practices and Requirements
	Domain-wide Principles
	Domain-wide Recommended Practices
	Rationale:
	Rationale:
	Rationale:
	Rationale:

	Domain-wide Requirements
	Rationale:
	Rationale:
	Rationale:
	Rationale:

	Application Domain Technical Topics
	Enterprise System Design
	Service-Oriented Architecture (SOA): Implementation and Governance
	Principle:
	Rationale:
	Recommended Practices:
	Rationale:
	Rationale:
	Rationale:
	Requirements:
	Enterprise Artifact Repository
	Requirement:
	Application Interfaces
	Recommended Practices:
	Rationale:
	Rationale:

	Application Acquisition
	Principle:
	Rationale:
	Recommended Practices:
	Rationale:
	Rationale:
	Requirements:

	Development and Support Platforms
	Recommended Practices:
	Objectives:
	Rationale:
	Enterprise Framework Platform
	Recommended Practices:
	Rationale:
	Rationale:
	Collaborative Platform
	Principle:
	Rationale:
	Recommended Practices:
	Rationale:
	Rationale:
	Rationale:
	Rationale:
	Development Languages
	Technology Component Standard
	Coding Guidelines and Standards
	Recommended Practice:
	Rationale:
	Examples:
	Requirement:

	Software Engineering
	Principles:
	Rationale:
	Rationale:
	Recommended Practice:
	Requirements:
	Rationale:
	Rationale:
	Software Development Methodologies
	Recommended Practice:
	Rationale:
	Application Architecture and Design
	Recommended Practices:
	Rationale:
	Rationale:
	Rationale:
	Rationale:
	Rationale:
	Rationale:
	Rationale:
	Rationale:
	Modeling
	Recommended Practices:
	Rationale:
	Business Rules
	Recommended Practices:
	Rationale:
	Rationale:
	Rationale:
	Rationale:
	Reusable Components
	Recommended Practices:
	Rationale:
	Rationale:
	Definitions:
	Rationale:
	Rationale:
	Requirement:
	Rationale:
	Configuration Management
	Requirement:
	Test Management
	Recommended Practice:
	Rationale:
	Rationale:
	Schedule and Task Management
	Recommended Practice:
	Rationale:
	Rationale:

	Geospatial Technologies
	Enterprise Applications
	eCommerce
	Recommended Practices:
	Rationale:

	Glossary
	Business Reference Model (BRM)
	Commercial off-the-shelf (COTS)
	Product Standards
	Service- Component Reference Model (SRM)

	Appendix A: Example SOA Centralized Implementation and Governance Model
	1) Decentralized Service Development
	2) Centralized Governance Management and Support Model
	3) Centralized Enterprise Repository
	4) Centralized Integration Competency Center

	Appendix B: Software Testing Types and Techniques
	Dynamic Software Testing Types
	Bug Verification Testing
	Build Acceptance Testing
	Claim Testing
	Compliance/Conformance Testing
	Conversion Testing
	End-to-End Testing
	Functional Testing
	Installability Testing
	Installation Testing
	Integration Testing
	Interface Testing
	Load Testing
	Negative Testing
	Operations Acceptance Testing
	Parallel Testing
	Performance Testing
	Pilot Testing
	Platform Configuration Testing
	Recovery Testing
	Regression Testing
	Reliability Testing
	Risk-based Testing
	Security Testing
	Specification-based Testing
	Stress Testing
	System Testing
	Technical Testing
	Unit Testing
	User Acceptance Testing (UAT)
	Volume Testing

	Dynamic Testing Techniques
	Boundary Value Analysis
	Domain Testing
	Equivalence Partitioning
	Setups and Cleanups (Testing from a known state)
	Sequence (Scenario) Testing

	Static Testing Techniques
	Audits
	Checklists
	Code Coverage Analysis
	Code Inspections
	Cyclomatic Complexity Analysis
	Reading
	Requirements Validation
	Reviews
	Version Comparators
	Walkthroughs

	Appendix C: Features and Benefits of the Virginia.gov Payment Portal
	Interoperability
	Technical Environment Overview
	Security
	Privacy
	Availability
	Customization
	Account Set-up and Testing
	Reporting – Credit Card Payments
	Reporting – ACH Payments
	Monitoring
	Customer Support

	Appendix D: References and Links
	References:
	State and Federal Sites:
	E-Gov: Federal Enterprise Architecture (FEA)
	Department of Interior
	Housing and Urban Development:
	Department of Education:
	California:
	Connecticut:
	Massachusetts:
	North Carolina:
	Pennsylvania:
	Other Information References:
	Enterprise Architecture Executive Council (EAEC):
	Other Articles:
	Other Website References:
	The Center for Open Source & Government
	The National Center for Open Source Policy and Research
	Open Source Initiative (OSI)
	Microsoft:
	IBM:

